題目列表(包括答案和解析)
設(shè)函數(shù),給出下列四個(gè)命題:
①當(dāng)時(shí),函數(shù)是單調(diào)函數(shù)
②當(dāng)時(shí),方程只有一個(gè)實(shí)根
③函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
④方程至多有3 個(gè)實(shí)根,其中正確命題的個(gè)數(shù)為
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
設(shè)函數(shù),給出下列四個(gè)命題:
①當(dāng)時(shí),函數(shù)是單調(diào)函數(shù)
②當(dāng)時(shí),方程只有一個(gè)實(shí)根
③函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
④方程至多有3 個(gè)實(shí)根,其中正確命題的個(gè)數(shù)為
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
設(shè)函數(shù)給出下列四個(gè)命題:①時(shí),是奇函數(shù)②時(shí),方程 只有一個(gè)實(shí)根③的圖象關(guān)于對(duì)稱 ④方程至多兩個(gè)實(shí)根.其中正確的命題是
A.①、④ B.①、③ C.①、②、③ D.①、②、④
.設(shè)函數(shù)給出下列四個(gè)命題:①當(dāng)時(shí),只有一個(gè)實(shí)數(shù)根;②當(dāng)時(shí),為偶函數(shù);③函數(shù)圖象關(guān)于點(diǎn)對(duì)稱]
④當(dāng)時(shí),方程有兩個(gè)不等實(shí)根.
上述命題中,正確命題的序號(hào)是
一、選擇題(每小題5分,共40分)
1-8.BACDD CCD
二、填空題(每小題5分,共30分)
9. 必要非充分
10. 4
11. 3
12.(e,e)
13. x + 6 說明:f(x) = ax + 6 (a = 1,2,3,4,5)均滿足條件.
14. 10 .
三、解答題(共80分)
15.(12分)
.
16.(13分)
(1)當(dāng)6≤t<9時(shí).(2分)
(3分)
(5分)
(分鐘)(6分)
(2)
∴(分鐘)(8分)
(3)
∴(分鐘)
綜上所述,上午8時(shí),通過該路段用時(shí)最多,為18.75分鐘。(13分)
17.(13分)
,∴(4分)
∴(6分)
“有且只有一個(gè)實(shí)數(shù)滿足”,即拋物線與x軸有且只有一個(gè)交點(diǎn),
∴,∴(10分)
∴
∴(13分)
18.(14分)
19.(14分)
(1),∴.
要使函數(shù)f(x)在定義域內(nèi)為單調(diào)函數(shù),則在內(nèi)恒大于0或恒小于0,
當(dāng)在內(nèi)恒成立;
當(dāng)要使恒成立,則,解得,
當(dāng)要使恒成立,則,解得,
所以的取值范圍為或或.
根據(jù)題意得:,∴
于是,
用數(shù)學(xué)歸納法證明如下:
當(dāng),不等式成立;
假設(shè)當(dāng)時(shí),不等式成立,即也成立,
當(dāng)時(shí),,
所以當(dāng),不等式也成立,
綜上得對(duì)所有時(shí)5,都有.
(3) 由(2)得,
于是,
所以,
累乘得:,
所以.
20.(14分)
(1)∵定義域{x| x ≠ kπ,k∈Z }關(guān)于原點(diǎn)對(duì)稱,
又f(- x) = f [(a - x) - a]= = = = = = - f (x),
對(duì)于定義域內(nèi)的每個(gè)x值都成立
∴ f(x)為奇函數(shù)(4分)
(2)易證:f(x + 4a) = f(x),周期為
(3)f(2a)= f(a + a)= f [a -(- a)]= = = 0,
f(3a)=
f(
先證明f(x)在[
設(shè)
∴ f(x - 2a)= = - > 0,
∴ f(x)< 0(10分)
設(shè)2a < x1
< x2 <
則0 < x2 - x1 < a,∴ f(x1)< 0 f(x2)< 0 f(x2 - x1)> 0,
∴ f(x1)- f(x2)= > 0,
∴ f(x1)> f(x2),
∴ f(x)在[
∴ f(x)在[
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com