A.在線性回歸模型中.相關指數(shù).說明預報變量對解釋變量的貢獻率是 查看更多

 

題目列表(包括答案和解析)

下列說法錯誤的是( )
A.在線性回歸模型中,相關指數(shù)R2取值越大,模型的擬合效果越好
B.對于具有相關關系的兩個變量,相關系數(shù)r的絕對值越大,表明它們的線性相關性越強
C.命題“?x∈R.使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”
D.命題若x=y,則sin.r=siny”的逆否命題為真命題

查看答案和解析>>

下列說法錯誤的是( )
A.在線性回歸模型中,相關指數(shù)R2取值越大,模型的擬合效果越好
B.對于具有相關關系的兩個變量,相關系數(shù)r的絕對值越大,表明它們的線性相關性越強
C.命題“?x∈R.使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”
D.命題若x=y,則sin.r=siny”的逆否命題為真命題

查看答案和解析>>

在回歸分析中,相關指數(shù)R2越接近1,說明                        (  )
A.兩個變量的線性相關關系越強B.兩個變量的線性相關關系越弱
C.回歸模型的擬合效果越好D.回歸模型的擬合效果越差

查看答案和解析>>

在回歸分析中,相關指數(shù)R2越接近1,說明                        (  )

A.兩個變量的線性相關關系越強 B.兩個變量的線性相關關系越弱
C.回歸模型的擬合效果越好 D.回歸模型的擬合效果越差

查看答案和解析>>

 給出下列四個命題,其中正確的一個是    

    A.在線性回歸模型中,相關指數(shù)R2=0.80,說明預報變量對解釋變量的貢獻率是80%

    B.在獨立性檢驗時,兩個變量的2×2列表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關系成立的可能性就越大

    C.相關指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好

    D.隨機誤差e是衡量預報精確度的一個量,它滿足E(e)=0

 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分. 在每小題給出的四個選項中,選擇一個符合題目要求的選項.

(1)C    (2)B    (3)D    (4)C     (5)B    (6)B   

(7)A    (8)C    (9)B    (10)D   (11)A    (12)B

二、填空題:本大題共4小題,每小題4分,共16分. 答案填在題中橫線上.

13. 如果一個二面角的兩個面與另一個二面角的兩個面分別垂直,則這兩個二面角相等或互補     假     14.   15. 0     16.

三、解答題:本大題共6小題,共74分. 解答應寫出文字說明、證明過程或演算步驟.

17. 解:(Ⅰ)………2分

………4分

………6分

 (II)

   ……8分

的圖象與x軸正半軸的第一個交點為  ………10分

所以的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積

=    …12分

18. 解:(Ⅰ)設搖獎一次,獲得一、二、三、四、五等獎的事件分別記為.

則其概率分別為……3分

設搖獎一次支出的學習用品相應的款項為,則的分布列為:

 

1

2

3

4

5

 

 

 

                                                  

.………6分

若捐款10元者達到1500人次,那么購買學習用品的款項為(元),

除去購買學習用品的款項后,剩余款項為(元),

故剩余款項可以幫助該生完成手術治療. ………8分

(II)記事件“學生甲捐款20元獲得價值6元的學習用品”為,則.

即學生甲捐款20元獲得價值6元的學習用品的概率為………12分

19. 以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D―xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). …  3分

(Ⅰ)證明:設則有所以,,∴平面;………6分

(II)解:

為平面的法向量,

于是………8分

同理可以求得平面的一個法向量,………10分

  ∴二面角的余弦值為. ………12分

20. 解:(Ⅰ)對求導數(shù),得,切點是的切線方程是.…2分

時,切線過點,即,得;

時,切線過點,即,得.

所以數(shù)列是首項,公比為的等比數(shù)列,

所以數(shù)列的通項公式為.………4分

(II)當時,數(shù)列的前項和=

同乘以,得=兩式相減,…………8分

=,

所以=.………12分

21.解:(Ⅰ)由于所以

………2分

,

當a=2時,

所以2-a≠0.

①     當2-a>0,即a<2時,的變化情況如下表1:

 

x

0

(0,2-a)

2-a

(2-a,+∞)

0

+

0

極小值

極大值

此時應有f(0)=0,所以a=0<2;

②當2-a<0,即a>2時,的變化情況如下表2:

x

2-a

(2-a,0)

0

(0,+∞)

0

+

0

極小值

極大值

此時應有

綜上可知,當a=0或4時,的極小值為0. ………6分

(II)若a<2,則由表1可知,應有 也就是

由于a<2得

所以方程  無解. ………8分

若a>2,則由表2可知,應有f(0)=3,即a=3. ………10分

綜上可知,當且僅當a=3時,f(x)的極大值為3. ………12分

22. 解:(Ⅰ)由得,;……4分

由直線與圓相切,得,所以,。所以橢圓的方程是.……4分

(II)由條件知,,即動點到定點的距離等于它到直線的距離,由拋物線的定義得點的軌跡的方程是.  ……8分

(III)由(2)知,設,,所以.

,得.因為,化簡得,……10分

(當且僅當,即時等號成立). ……12分    ,又

所以當,即時,,故的取值范圍是.14分

 

 

 

 

 


同步練習冊答案