16.在橢圓中.為過左焦點(diǎn)的弦.且.則橢圓的離心率 . 查看更多

 

題目列表(包括答案和解析)

在給定橢圓中,過左焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到直線x=的距離為1,則該橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

已知橢圓的中心在原點(diǎn),左焦點(diǎn)F1(-2,0),過左焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
2
6
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(-3,0)點(diǎn)的直線l與橢圓相交于A,B兩點(diǎn),若以線段A,B為直徑的圓過橢圓的左焦點(diǎn),求直線l的方程.

查看答案和解析>>

已知橢圓C的中心坐標(biāo)原點(diǎn),F(xiàn)1、F2分別為它的左、右焦點(diǎn),直線x=4為它的一條準(zhǔn)線,又知橢圓C上存在點(diǎn)M使2
MF1
-
MF2
=|
MF1
|•|
MF2
|•|
MF1
|=|
MF2
|

(1)求橢圓C的方程;
(2)若PQ為過橢圓焦點(diǎn)F2的弦,且
PF2
F2Q
,求△PF1Q
內(nèi)切圓面積最大時(shí)實(shí)數(shù)λ的值.

查看答案和解析>>

已知橢圓的中心在原點(diǎn),左焦點(diǎn)F1(-2,0),過左焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
2
6
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(-3,0)點(diǎn)的直線l與橢圓相交于A,B兩點(diǎn),若以線段A,B為直徑的圓過橢圓的左焦點(diǎn),求直線l的方程.

查看答案和解析>>


(12分)已知橢圓的中心在原點(diǎn),準(zhǔn)線為如果直線與橢圓的交點(diǎn)在x軸上的射影恰為橢圓的焦點(diǎn)
(1)求橢圓方程
(2)求過左焦點(diǎn)F1且與直線平行的弦EF的中點(diǎn)坐標(biāo)

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

C

B

C

C

B

B

C

 

二、填空題

13.()  14.x=0或y=0     15.4     16.2/3    17.20   18.①④

 

三、解答題

19.解:A(―4,2)關(guān)于直線對(duì)稱的點(diǎn)為,因?yàn)橹本的平分線,可以點(diǎn)在直線上,故直線的方程是,由,,則是以為直角的三角形,,10

 

20.解:由,,設(shè)雙曲線方程為,橢圓方程為,它們的焦點(diǎn),則

*,又,雙曲線方程為,橢圓方程為

 

21.解:,設(shè)橢圓方程為①,設(shè)過的直線方程為②,將②代入①得③,設(shè),的中點(diǎn)為代入,,,由③,解得

 

22.解:⑴設(shè)直線方程為:代入,得

,另知直線與半圓相交的條件為,設(shè),則,點(diǎn)位于的右側(cè),應(yīng)有,即(亦可求出的橫坐標(biāo)

⑵若為正,則點(diǎn)到直線距離

矛盾,在⑴條件下不可能是正△.

 

文本框: F223.⑴由題意設(shè)橢圓方程為:,則解得: ,所以橢圓方程為:

⑵設(shè)“左特征點(diǎn)”,設(shè)的平分線,,,下面設(shè)直線的方程為,代入得:,代入上式得解得

⑶橢圓的“左特征點(diǎn)”M是橢圓的左準(zhǔn)線和x軸的交點(diǎn)證明如下:

證明:設(shè)橢圓的左準(zhǔn)線與x軸相交于點(diǎn)M,過點(diǎn)A、B分別作的垂線,垂足分別為點(diǎn)C、D。據(jù)橢圓第二定義得,

,∴,

均為銳角,∴。

!的平分線。故點(diǎn)為橢圓的“左特征點(diǎn)”。


同步練習(xí)冊(cè)答案