題目列表(包括答案和解析)
X | 3 | 4 | 5 | 6 | ||||
Y |
|
3 | 4 |
|
? |
y |
X | 3 | 4 | 5 | 6 |
Y | 3 | 4 |
OA |
OB |
OM |
ON |
OA |
OB |
MN |
5 |
4 |
A、①、② | B、②、③ |
C、①、③ | D、①、②、③ |
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 105 |
2 |
7 |
3 |
11 |
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
C
B
C
C
B
B
C
二、填空題
13.() 14.x=0或y=0 15.4 16.2/3 17.20 18.①④
三、解答題
19.解:A(―4,2)關(guān)于直線:對稱的點為,因為直線是中的平分線,可以點在直線上,故直線的方程是,由,,則是以為直角的三角形,,10
20.解:由,,設(shè)雙曲線方程為,橢圓方程為,它們的焦點,則
,又,,雙曲線方程為,橢圓方程為
21.解:,設(shè)橢圓方程為①,設(shè)過和的直線方程為②,將②代入①得-③,設(shè),的中點為代入,,,由③,,解得
22.解:⑴設(shè)直線方程為:代入,得
,另知直線與半圓相交的條件為,設(shè),則,,點位于的右側(cè),應(yīng)有,即,(亦可求出的橫坐標(biāo))
⑵若為正,則點到直線距離
與矛盾,在⑴條件下不可能是正△.
23.⑴由題意設(shè)橢圓方程為:,則解得: ,所以橢圓方程為:
⑵設(shè)“左特征點”,設(shè),為的平分線,,,下面設(shè)直線的方程為,代入得:,代入上式得解得
⑶橢圓的“左特征點”M是橢圓的左準(zhǔn)線和x軸的交點證明如下:
證明:設(shè)橢圓的左準(zhǔn)線與x軸相交于點M,過點A、B分別作的垂線,垂足分別為點C、D。據(jù)橢圓第二定義得,
∵∥∥,∴,
∴∵與均為銳角,∴。
∴!為的平分線。故點為橢圓的“左特征點”。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com