B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實(shí)根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到
(1)求實(shí)數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,滿分50分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

B

B

C

A

D

B

A

C

二、填空題(每小題4分,共28分)

11.1+2i          12.5            13.             14.  13   

15.  2或           16.          17.9

三、解答題:本大題共5小題,滿分72分.解答須寫出文字說明、證明過程和演算步驟.

18.(本題滿分14分)

解:(1)f(x)=    T=4

   (2)    (3)兩邊平方得

,而        ∴

19.(本小題滿分14分)

   (1)證明:∵A/O⊥面CEFB  

∴EF⊥A/O,又EF⊥EC  

A/O∩EC=0

∴EF⊥面A/EC 

而A/C面A/EC

 ∴EF⊥A/C

   (2)

20.(本題滿分14分)

解:(1)an+1=2Sn+1,an=2Sn-1+1兩式相減得an+1=3an(a≥2),又a2=2S1+1=2a1+1=3=3a1 

  {an}是以a1=1為首項(xiàng),3為公比的等比數(shù)列,an=3n-1

(2)Tn=5n2+20n

21.(本小題滿分15分)

解:(1)W:x2=6y

   (2)設(shè)AC: 

設(shè)A(x1,y1),C(x2,y2)  |AC|=6(k2+1)

同理|BD|=6

SABCD­=

當(dāng)k=±1時取等號

22.(本小題滿分15分)

解:(1)f(x)=ax34ax2+4ax

         f/(x)=3ax28ax+4a=a(3x2)(x2)=0x=或2

∵f(x)有極大值32,而f(2)=0  ∴f()=32=7,a=27

   (2)f/(x)=a(3x2)(x2)

當(dāng)a>0時,f(x)=[ 2,]上遞增在[]上遞減,

    ∴0<a<

當(dāng)a<0時,f(x)在[2,]上遞減,在[]上遞增

f(2)= 32a>f(1)=a    ∴    ∴

綜上

 

 


同步練習(xí)冊答案