(C) (D) 查看更多

 

題目列表(包括答案和解析)

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:CDACB; 6-10:ABCDB; 11-12:CD.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.1;  14.;  15.; 16.①②④.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,∴

,∴.?????????????????????????????????????????????????????????? 2分

???????????????????????????????????? 4分

.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ),,則.???????????????????????? 8分

.?????????????????????????????????????????????????????? 10分

,∴,∴.????????????????????????????????????????? 12分

18.解:(Ⅰ)設(shè)“學(xué)生甲投籃3次入圍”為事件A;“學(xué)生甲投籃4次入圍”為事件B,且事件A、B互斥.      1分

;??????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????? 5分

故學(xué)生甲最多投籃4次就入圍的概率為.?????????????????????????? 6分

(Ⅱ)依題意,的可能取值為3,4,5.則,??????????????? 7分

,?????????????????????????????????????????????? 8分

.?????????????????????????????????????????????????????????????????????? 9分

的分布列為:

3

4

5

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????????????????????????????????????? 12分

19.解:方法一 (Ⅰ)∵DE⊥平面ACD,AF平面ACD,

∴DE⊥AF.又∵AC=AD,F(xiàn)為CD中點(diǎn),∴AF⊥CD,因CD∩DE=D,

∴AF⊥平面CDE.???????????????????????????????????????????????????????????????????????????????????????????????? 4分

  (Ⅱ)延長DA,EB交于點(diǎn)H,連結(jié)CH,因?yàn)锳B∥DE,AB=DE,所以A為HD的中點(diǎn).因?yàn)镕為CD中點(diǎn),所以CH∥AF,因?yàn)锳F⊥平面CDE,所以CH⊥平面CDE,故∠DCE為面ACD和面BCE所成二面角的平面角,而△CDE是等腰直角三角形,則∠DCE=45°,則所求成銳二面角大小為45°.???????????? 8分

(Ⅲ),因DEAB,故點(diǎn)E到平面ABC的距離h等于點(diǎn)D到平面ABC的距離,也即△ABC中AC邊上的高.??????????????????????????????????????????????????? 10分

∴三棱錐體積.???????? 12分

方法二  (Ⅱ)取CE的中點(diǎn)Q,連接FQ,因?yàn)镕為CD的中點(diǎn),則FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,F(xiàn)Q,F(xiàn)A兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),建立如圖坐標(biāo)系,則F(0,0,0),C(,0,0),A(0,0,),B(0,1,),E(1,2,0).平面ACD的一個(gè)法向量為,      5分

設(shè)面BCE的法向量,

.???????????????????????????? 7分

∴面ACD和面BCE所成銳二面角的大小為45°.?????????? 8分

(Ⅲ)由(Ⅱ)知面BCE的一個(gè)法向量為,.點(diǎn)A到BCE的距離.?????????????????????????????????????????????????????????????????????????????????????? 10分

,,,△BCE的面積.?? 11分

三棱錐A-BCE的體積.??????????????????????????????????????????????????????? 12分

20.解:(Ⅰ)當(dāng)時(shí),.?????????????????????????????????????? 1分

,解得;,解得.????????????????????????? 3分

∴函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.????????????????????????? 4分

(Ⅱ)由不等式的解集為P,且,可知,對于任意,不等式恒成立,即上恒成立.???????????????????????????????????????????????????????????????????????????????? 6分

,∴.???????????????????????????????????????????????????????????????????? 8分

當(dāng)時(shí),;當(dāng)時(shí),

∴函數(shù)上單調(diào)遞增;在上單調(diào)遞減.????????????????????????????????????????? 10分

所以函數(shù)處取得極大值,即為在上的最大值.

∴實(shí)數(shù)t的取值范圍是.????????????????????????????????????????????????????????????????????????? 12分

21.解:(Ⅰ)由已知 ,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的雙曲線的右支.   2分

設(shè)方程為,則,,∴.??????????????????????????????????????? 3分

故軌跡E的方程為.??????????????????????????????????????????????????????????????????? 4分

(Ⅱ)①若存在.據(jù)題意,直線l的斜率存在且不等于0,設(shè)為k(k≠0),則l的方程為,與雙曲線方程聯(lián)立消y得,設(shè)、

解得.????????????????????????????????????????????????????????????????????? 5分

知,△HPQ是等腰三角形,設(shè)PQ的中點(diǎn)為,則,即.      6分

,,即

,即,解得,因,故

故存在直線l,使成立,此時(shí)l的方程為.???????????????????????? 8分

②∵,∴直線是雙曲線的右準(zhǔn)線,由雙曲線定義得:,,∴.???????????????????????????????????????????????????????????????? 9分

方法一:當(dāng)直線l的斜率存在時(shí),∴

.∵,∴,∴.???????????????????????? 11分

當(dāng)直線l的斜率不存在時(shí),,,綜上.??????????????????????? 12分

方法二:設(shè)直線的傾斜角為,由于直線與雙曲線右支有兩個(gè)交點(diǎn),

,過Q作,垂足為C,則

,由,得

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

22.(Ⅰ)解:,,∴.??????????????????????? 2分

(Ⅱ)證明:由(Ⅰ)知,

,當(dāng)且僅當(dāng)時(shí),

a1=1,故.????????????????????????????????????????????????????????????????????????????????????? 4分

下面采用數(shù)學(xué)歸納法證明

當(dāng)n=1時(shí),a1=1<2,結(jié)論成立.?????????????????????????????????????????????????????????????????????????? 5分

假設(shè)n=k時(shí),結(jié)論成立,即,則n=k+1時(shí),

,而函數(shù)上單調(diào)遞增,由,

,即當(dāng)n=k+1時(shí)結(jié)論也成立.???????????????????????????????????????? 7分

綜上可知:.??????????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由,有

,∴.?????????????????????????????? 10分

,

.????????????????????????????? 12分

,求得

當(dāng)n=1時(shí),;當(dāng)n=2時(shí),;當(dāng)n≥3時(shí),由(Ⅱ)知,有.      14分

 

 

 


同步練習(xí)冊答案