題目列表(包括答案和解析)
一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.
1-5:CDACB; 6-10:ABCDB; 11-12:CD.
二、填空題:本大題共4個(gè)小題,每小題4分,共16分.
13.1; 14.; 15.; 16.①②④.
三、解答題:本大題共6個(gè)小題,共74分.解答要寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.
17.解:(Ⅰ)∵,∴,
∵,∴.?????????????????????????????????????????????????????????? 2分
則???????????????????????????????????? 4分
.??????????????????????????????????????????????????????????????????????????????? 6分
(Ⅱ)由(Ⅰ),,,則.???????????????????????? 8分
則.?????????????????????????????????????????????????????? 10分
∵,∴,∴.????????????????????????????????????????? 12分
18.解:(Ⅰ)設(shè)“學(xué)生甲投籃3次入圍”為事件A;“學(xué)生甲投籃4次入圍”為事件B,且事件A、B互斥. 1分
則;??????????????????????????????????????????????????????????????????????????????????????????? 3分
.????????????????????????????????????????????????????????????????????????????? 5分
故學(xué)生甲最多投籃4次就入圍的概率為.?????????????????????????? 6分
(Ⅱ)依題意,的可能取值為3,4,5.則,??????????????? 7分
,?????????????????????????????????????????????? 8分
.?????????????????????????????????????????????????????????????????????? 9分
則的分布列為:
3
4
5
P
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分
故.???????????????????????????????????????????????????????????????????????? 12分
19.解:方法一 (Ⅰ)∵DE⊥平面ACD,AF平面ACD,
∴DE⊥AF.又∵AC=AD,F(xiàn)為CD中點(diǎn),∴AF⊥CD,因CD∩DE=D,
∴AF⊥平面CDE.???????????????????????????????????????????????????????????????????????????????????????????????? 4分
(Ⅱ)延長(zhǎng)DA,EB交于點(diǎn)H,連結(jié)CH,因?yàn)锳B∥DE,AB=DE,所以A為HD的中點(diǎn).因?yàn)镕為CD中點(diǎn),所以CH∥AF,因?yàn)锳F⊥平面CDE,所以CH⊥平面CDE,故∠DCE為面ACD和面BCE所成二面角的平面角,而△CDE是等腰直角三角形,則∠DCE=45°,則所求成銳二面角大小為45°.???????????? 8分
(Ⅲ),因DE∥AB,故點(diǎn)E到平面ABC的距離h等于點(diǎn)D到平面ABC的距離,也即△ABC中AC邊上的高.??????????????????????????????????????????????????? 10分
∴三棱錐體積.???????? 12分
方法二 (Ⅱ)取CE的中點(diǎn)Q,連接FQ,因?yàn)镕為CD的中點(diǎn),則FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,F(xiàn)Q,F(xiàn)A兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),建立如圖坐標(biāo)系,則F(0,0,0),C(,0,0),A(0,0,),B(0,1,),E(1,2,0).平面ACD的一個(gè)法向量為, 5分
設(shè)面BCE的法向量,則即取.
則.???????????????????????????? 7分
∴面ACD和面BCE所成銳二面角的大小為45°.?????????? 8分
(Ⅲ)由(Ⅱ)知面BCE的一個(gè)法向量為,.點(diǎn)A到BCE的距離.?????????????????????????????????????????????????????????????????????????????????????? 10分
又,,,△BCE的面積.?? 11分
三棱錐A-BCE的體積.??????????????????????????????????????????????????????? 12分
20.解:(Ⅰ)當(dāng)時(shí),,.?????????????????????????????????????? 1分
由,解得;,解得.????????????????????????? 3分
∴函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.????????????????????????? 4分
(Ⅱ)由不等式的解集為P,且,可知,對(duì)于任意,不等式恒成立,即即在上恒成立.???????????????????????????????????????????????????????????????????????????????? 6分
令,∴.???????????????????????????????????????????????????????????????????? 8分
當(dāng)時(shí),;當(dāng)時(shí),.
∴函數(shù)在上單調(diào)遞增;在上單調(diào)遞減.????????????????????????????????????????? 10分
所以函數(shù)在處取得極大值,即為在上的最大值.
∴實(shí)數(shù)t的取值范圍是.????????????????????????????????????????????????????????????????????????? 12分
21.解:(Ⅰ)由已知 ,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的雙曲線的右支. 2分
設(shè)方程為,則,,∴.??????????????????????????????????????? 3分
故軌跡E的方程為.??????????????????????????????????????????????????????????????????? 4分
(Ⅱ)①若存在.據(jù)題意,直線l的斜率存在且不等于0,設(shè)為k(k≠0),則l的方程為,與雙曲線方程聯(lián)立消y得,設(shè)、,
∴解得.????????????????????????????????????????????????????????????????????? 5分
由知,△HPQ是等腰三角形,設(shè)PQ的中點(diǎn)為,則,即. 6分
而,,即.
∴,即,解得或,因,故.
故存在直線l,使成立,此時(shí)l的方程為.???????????????????????? 8分
②∵,∴直線是雙曲線的右準(zhǔn)線,由雙曲線定義得:,,∴.???????????????????????????????????????????????????????????????? 9分
方法一:當(dāng)直線l的斜率存在時(shí),∴
.∵,∴,∴.???????????????????????? 11分
當(dāng)直線l的斜率不存在時(shí),,,綜上.??????????????????????? 12分
方法二:設(shè)直線的傾斜角為,由于直線與雙曲線右支有兩個(gè)交點(diǎn),
∴,過(guò)Q作,垂足為C,則,
∴,由,得,
∴.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分
22.(Ⅰ)解:,,∴.??????????????????????? 2分
(Ⅱ)證明:由(Ⅰ)知,
∴,當(dāng)且僅當(dāng)時(shí),.
∵a1=1,故.????????????????????????????????????????????????????????????????????????????????????? 4分
下面采用數(shù)學(xué)歸納法證明.
當(dāng)n=1時(shí),a1=1<2,結(jié)論成立.?????????????????????????????????????????????????????????????????????????? 5分
假設(shè)n=k時(shí),結(jié)論成立,即,則n=k+1時(shí),
,而函數(shù)在上單調(diào)遞增,由,
∴,即當(dāng)n=k+1時(shí)結(jié)論也成立.???????????????????????????????????????? 7分
綜上可知:.??????????????????????????????????????????????????????????????????????????????? 8分
(Ⅲ)解:由,有,
∴ ,∴.?????????????????????????????? 10分
故,
則.????????????????????????????? 12分
由,,求得.
當(dāng)n=1時(shí),;當(dāng)n=2時(shí),;當(dāng)n≥3時(shí),由(Ⅱ)知,有. 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com