由①得代入③得.----12分 查看更多

 

題目列表(包括答案和解析)

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

2006年普通高等學校招生全國統(tǒng)一考試(北京卷)

理科綜合能力測試試題卷(生物部分)

1.以下不能說明細胞全能性的實驗是

A.胡蘿卜韌皮部細胞培育出植株            B.紫色糯性玉米種子培育出植株

C.轉(zhuǎn)入抗蟲基因的棉花細胞培育出植株      D.番茄與馬鈴薯體細胞雜交后培育出植株

2.夏季,在晴天、陰天、多云、高溫干旱四種天氣條件下,獼猴桃的凈光合作用強度(實際光合速率與呼吸速率之差)變化曲線不同,表示晴天的曲線圖是

3.用蔗糖、奶粉和經(jīng)蛋白酶水解后的玉米胚芽液,通過乳酸菌發(fā)酵可生產(chǎn)新型酸奶,下列相關(guān)敘述錯誤的是

A.蔗糖消耗量與乳酸生成量呈正相關(guān)        B.酸奶出現(xiàn)明顯氣泡說明有雜菌污染

C.應選擇處于對數(shù)期的乳酸菌接種          D.只有奶粉為乳酸菌發(fā)酵提供氮源

4.用32P標記了玉米體細胞(含20條染色體)的DNA分子雙鏈,再將這些細胞轉(zhuǎn)入不含32P的培養(yǎng)基中培養(yǎng),在第二次細胞分裂的中期、后期,一個細胞中的染色體總條數(shù)和被32P標記的染色體條數(shù)分別是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)為合理利用水域資源,某調(diào)查小組對一個開放性水庫生態(tài)系統(tǒng)進行了初步調(diào)查,部分數(shù)據(jù)如下表:

(1)浮游藻類屬于該生態(tài)系統(tǒng)成分中的          ,它處于生態(tài)系統(tǒng)營養(yǎng)結(jié)構(gòu)中的         

(2)浮游藻類數(shù)量少,能從一個方面反映水質(zhì)狀況好。調(diào)查數(shù)據(jù)分析表明:該水體具有一定的       能力。

(3)浮游藻類所需的礦質(zhì)營養(yǎng)可來自細菌、真菌等生物的          ,生活在水庫淤泥中的細菌代謝類型主要為          。

(4)該水庫對游人開放一段時間后,檢測發(fā)現(xiàn)水體己被氮、磷污染。為確定污染源是否來自游人,應檢測

          處浮游藻類的種類和數(shù)量。

30.(18分)為豐富植物育種的種質(zhì)資源材料,利用鈷60的γ射線輻射植物種子,篩選出不同性狀的突變植株。請回答下列問題:

(1)鈷60的γ輻射用于育種的方法屬于          育種。

(2)從突變材料中選出高產(chǎn)植株,為培育高產(chǎn)、優(yōu)質(zhì)、抗鹽新品種,利用該植株進行的部分雜交實驗如下:

①控制高產(chǎn)、優(yōu)質(zhì)性狀的基因位于        對染色體上,在減數(shù)分裂聯(lián)會期        (能、不能)配對。

②抗鹽性狀屬于          遺傳。

(3)從突變植株中還獲得了顯性高蛋白植株(純合子)。為驗證該性狀是否由一對基因控制,請參與實驗設計并完善實驗方案:

①步驟1:選擇                    雜交。

預期結(jié)果:                                                 

②步驟2:                                                  。

預期結(jié)果:                                                  。

③觀察實驗結(jié)果,進行統(tǒng)計分析:如果                    相符,可證明該性狀由一對基因控制。

 

31.(18分)為研究長跑中運動員體內(nèi)的物質(zhì)代謝及其調(diào)節(jié),科學家選擇年齡、體重相同,身體健康的8名男性運動員,利用等熱量的A、B兩類食物做了兩次實驗。

實驗還測定了糖和脂肪的消耗情況(圖2)。

請據(jù)圖分析回答問題:

(1)圖1顯示,吃B食物后,          濃度升高,引起          濃度升高。

(2)圖1顯示,長跑中,A、B兩組胰島素濃度差異逐漸          ,而血糖濃度差異卻逐漸          ,A組血糖濃度相對較高,分析可能是腎上腺素和          也參與了對血糖的調(diào)節(jié),且作用相對明顯,這兩種激素之間具有          作用。

(3)長跑中消耗的能量主要來自糖和脂肪。研究表明腎上腺素有促進脂肪分解的作用。從能量代謝的角度分析圖2,A組脂肪消耗量比B組          ,由此推測A組糖的消耗量相對         

(4)通過檢測尿中的尿素量,還可以了解運動員在長跑中          代謝的情況。

 

參考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生產(chǎn)者    第一營養(yǎng)級

    (2)自動調(diào)節(jié)(或自凈化)

    (3)分解作用    異養(yǎng)厭氧型

    (4)入水口

30.(18分)

    (1)誘變

    (2)①兩(或不同)    不能

    ②細胞質(zhì)(或母系)

    (3)①高蛋白(純合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表現(xiàn)型都是高蛋白植株

    ②測交方案:

    用F1與低蛋白植株雜交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或雜合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③實驗結(jié)果    預期結(jié)果

31.(18分)

    (1)血糖    胰島素

    (2)減小    增大    胰高血糖素    協(xié)同

    (3)高    減少

    (4)蛋白質(zhì)

 

 

                                             

 

查看答案和解析>>

已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

第一問中,可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

第二問中,

假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

 (Ⅱ) 假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調(diào)遞增,又    

① 當,即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習冊答案