(2)由題設(shè)知時 恒成立 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)
設(shè)二次函數(shù),對任意實數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式;
(2)試寫出一個區(qū)間,使得當(dāng)時,且數(shù)列是遞增數(shù)列,并說明理由;
(3)已知,是否存在非零整數(shù),使得對任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

(本題滿分12分)

設(shè)二次函數(shù),對任意實數(shù),有恒成立;數(shù)列滿足.

(1)求函數(shù)的解析式;

(2)試寫出一個區(qū)間,使得當(dāng)時,且數(shù)列是遞增數(shù)列,并說明理由;

(3)已知,是否存在非零整數(shù),使得對任意,都有

 恒成立,若存在,求之;若不存在,說明理由.

 

查看答案和解析>>

(本題滿分12分)
設(shè)二次函數(shù),對任意實數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式;
(2)試寫出一個區(qū)間,使得當(dāng)時,且數(shù)列是遞增數(shù)列,并說明理由;
(3)已知,是否存在非零整數(shù),使得對任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

已知,設(shè)是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時,的最小值為3.

要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>


同步練習(xí)冊答案