①當(dāng)時.函數(shù)在上是增函數(shù), 查看更多

 

題目列表(包括答案和解析)

 

已知上是增函數(shù),在上是減函數(shù),且有三個根。

(I)求的值,并求出的取值范圍;

(Ⅱ)求證:

(Ⅲ)求的取值范圍,并寫出當(dāng)取最小值時的的解析式。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

函數(shù)f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函數(shù).
(Ⅰ)求正實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=x2+2x,在使g(x)≥M對定義域內(nèi)的任意x值恒成立的所有常數(shù)M中,我們把M的最大值M=-1叫做f(x)=x2+2x的下確界,若函數(shù)f(x)=
1-x
ax
+lnx
的定義域為[1,+∞),根據(jù)所給函數(shù)g(x)的下確界的定義,求出當(dāng)a=1時函數(shù)f(x)的下確界.
(Ⅲ)設(shè)b>0,a>1,求證:ln
a+b
b
1
a+b
.

查看答案和解析>>

函數(shù)f(x)的定義域為D={x|x≠0,x∈R},且滿足對于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)當(dāng)f(4)=1,f(x)在(0,+∞)上是增函數(shù)時,若f(x-1)<2,求x的取值范圍.

查看答案和解析>>

函數(shù)f( x )=2x-
ax
的定義域為(0,+∞)(a為實數(shù)).
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域(不必說明理由);
(2)若函數(shù)y=f(x)在[1,+∞)定義域上是增函數(shù),求負數(shù)a的取值范圍;
(3)在(2)的條件下,若不等式f(m•4x+1)≥f(2x)(m>0,且m為常數(shù))在x∈(0,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

函數(shù)f(x)=x+
ax
(x>0,a>0).
(1)當(dāng)a=1時,證明:f(x)在(1,+∞)上是增函數(shù);
(2)若f(x)在(0,2)上是減函數(shù),求a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案