解:(1)依題意水箱底的寬為米.----3分 查看更多

 

題目列表(包括答案和解析)

如圖,,,…,,…是曲線上的點(diǎn),,…,,…是軸正半軸上的點(diǎn),且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出、之間的等量關(guān)系,以及之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用有得到

第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

第三問 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

則當(dāng)時(shí),由歸納假設(shè)及,

解得不合題意,舍去)

即當(dāng)時(shí),命題成立.  …………………………………………4分

綜上所述,對(duì)所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

精英家教網(wǎng)某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/米2,水池所有墻的厚度忽略不計(jì).
(1)設(shè)污水處理池的寬為x,求總造價(jià)f(x)的函數(shù)解析式;
(2)要使總造價(jià)最低,求最低總造價(jià)及對(duì)應(yīng)污水處理池的長和寬.

查看答案和解析>>

一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每小時(shí)通過管道向所管轄區(qū)域供水千噸.

(1)多少小時(shí)后,蓄水池存水量最少?

(2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長?

【解析】第一問中(1)設(shè)小時(shí)后,蓄水池有水千噸.依題意,當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸

第二問依題意,   解得:

解:(1)設(shè)小時(shí)后,蓄水池有水千噸.………………………………………1分

依題意,…………………………………………4分

當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分

(2)依題意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>


同步練習(xí)冊(cè)答案