題目列表(包括答案和解析)
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
對(duì)某班級(jí)名學(xué)生學(xué)習(xí)數(shù)學(xué)與學(xué)習(xí)物理的成績(jī)進(jìn)行調(diào)查,得到如下表所示:
|
數(shù)學(xué)成績(jī)較好 |
數(shù)學(xué)成績(jī)一般 |
合計(jì) |
物理成績(jī)較好 |
18 |
7 |
25 |
物理成績(jī)一般 |
6 |
19 |
25 |
合計(jì) |
24 |
26 |
50 |
由,解得
0.050 |
0.010 |
0.001 |
|
3.841 |
6.635 |
10.828 |
參照附表,得到的正確結(jié)論是( )
(A)在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”
(B)在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)無關(guān)”
(C)有的把握認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)”
(D)有以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與物理成績(jī)無關(guān)”
一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計(jì)劃在當(dāng)日每小時(shí)向蓄水池注入水2千噸,且每小時(shí)通過管道向所管轄區(qū)域供水千噸.
(1)多少小時(shí)后,蓄水池存水量最少?
(2)當(dāng)蓄水池存水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時(shí)間有多長(zhǎng)?
【解析】第一問中(1)設(shè)小時(shí)后,蓄水池有水千噸.依題意,當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸
第二問依題意, 解得:
解:(1)設(shè)小時(shí)后,蓄水池有水千噸.………………………………………1分
依題意,…………………………………………4分
當(dāng),即(小時(shí))時(shí),蓄水池的水量最少,只有1千噸. ………2分
(2)依題意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,當(dāng)天有8小時(shí)會(huì)出現(xiàn)供水緊張的情況
已知函數(shù)y=x²-3x+c的圖像與x恰有兩個(gè)公共點(diǎn),則c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函數(shù)的圖象與軸恰有兩個(gè)公共點(diǎn),則說明函數(shù)的兩個(gè)極值中有一個(gè)為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以或,選A.
已知冪函數(shù)滿足。
(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為
(2)由(1)知,,,因此拋物線開口向下,對(duì)稱軸方程為:,結(jié)合二次函數(shù)的對(duì)稱軸,和開口求解最大值為5.,得到
(1)對(duì)于冪函數(shù)滿足,
因此,解得,………………3分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),,
當(dāng)k=1時(shí),,綜上所述,k的值為0或1,!6分
(2)函數(shù),………………7分
由此要求,因此拋物線開口向下,對(duì)稱軸方程為:,
當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,
所以,或…………………………………………10分
解得滿足題意
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com