②下面檢驗(yàn)g(x)F(x) 查看更多

 

題目列表(包括答案和解析)

(2009•東營一模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
已知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)

查看答案和解析>>

精英家教網(wǎng)(理科)某中學(xué)號(hào)召學(xué)生在2010年春節(jié)期間至少參加一次社會(huì)公益活動(dòng)(下面簡稱為“活動(dòng)”).該校合唱團(tuán)共有100名學(xué)生,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(Ⅰ)求合唱團(tuán)學(xué)生參加活動(dòng)的人均次數(shù);
(Ⅱ)從合唱團(tuán)中任選兩名學(xué)生,求他們參加活動(dòng)次數(shù)恰好相等的概率.

(文科)先后拋擲一枚骰子兩次,得到點(diǎn)數(shù)m,n,確定函數(shù)f(x)=x2+mx+n2,設(shè)函數(shù)f(x)有零點(diǎn)為事件A.
(Ⅰ)求事件A的概率P(A);
(Ⅱ)設(shè)函數(shù)g(x)=x2+12P(A)x-4的定義域?yàn)閇-5,5],記“當(dāng)x0∈[-5,5]時(shí),則g(x0)≥0”為事件B,求事件B的概率P(B).

查看答案和解析>>

某家電企業(yè)根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售某種家電的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該種家電x(百臺(tái)),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1.5萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)(萬元)滿足R(x)=
-0.5x2+5.5x(0≤x≤7)
18                      (x>7)
,假定該家電產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣出),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:
(1)寫出利潤函數(shù)y=f(x)解析式(利潤=銷售收入-總成本);
(2)假定該企業(yè)的產(chǎn)量必須在7百臺(tái)以上,要使工廠有盈利,求產(chǎn)量x的范圍;
(3)若沒有(2)的條件該企業(yè)生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多.

查看答案和解析>>

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+4.2x(0≤x≤5)
11,(x>5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案