解:(1)由題意得 ----1分 查看更多

 

題目列表(包括答案和解析)

.(本題滿分13分)設(shè)函數(shù),方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求證:數(shù)列{)是等差數(shù)列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的條件下,是否存在最小正整數(shù)m,使得對任意n∈N﹡,有成立,若存在,求出m的值;若不存在,請說明理由。

 

 

 

查看答案和解析>>

(1)橢圓C:(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2-a2。
(2)由(1)類比可得如下真命題:雙曲線C:(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值,請寫出這個(gè)定值(不要求給出解題過程)。

查看答案和解析>>

(1)橢圓Ca>b>0)與x軸交于AB兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PAPB分別與y軸交于點(diǎn)M、N,求證:為定值

(2)由(1)類比可得如下真命題:雙曲線Ca>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值.請寫出這個(gè)定值(不要求給出解題過程).

查看答案和解析>>

(1)橢圓Ca>b>0)與x軸交于AB兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、 PB分別與y軸交于點(diǎn)M、N,求證:為定值

(2)由(1)類比可得如下真命題:雙曲線Ca>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于AB的任意一點(diǎn),直線PAPB分別與y軸交于點(diǎn)M、N,求證:為定值.請寫出這個(gè)定值(不要求給出解題過程).

查看答案和解析>>

(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2-a2
(2)由(1)類比可得如下真命題:雙曲線C:+=1(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值.請寫出這個(gè)定值(不要求給出解題過程).

查看答案和解析>>


同步練習(xí)冊答案