.即. ----------8分后面解題步驟同解法一. 查看更多

 

題目列表(包括答案和解析)

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>

中,已知,;

(1)求的值;(2)若,求的值;

【解析】第一問中,利用

第二問中 

再有余弦定理解得。

解:(1)               ……4分

   (2)

       ……8分

  即 

 

查看答案和解析>>

(本小題滿分12分).

某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.

(I)假設n=2,求第一大塊地都種植品種甲的概率;

(II)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在個小塊地上的每公頃產量(單位:kg/hm2)如下表:

品種甲

403

397

390

404

388

400

412

406

品種乙

419

403

412

418

408

423

400

413

分別求品種甲和品種乙的每公頃產量的樣本平均數(shù)和樣本方差;根據(jù)試驗結果,你認為應該種植哪一品種?

附:樣本數(shù)據(jù)的的樣本方差,其中為樣本平均數(shù).

 

查看答案和解析>>

(本小題滿分12分)
某農場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種家和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.
(I)假設n=2,求第一大塊地都種植品種甲的概率;
(II)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在個小塊地上的每公頃產量(單位:kg/hm2)如下表:

品種甲
403
397
390
404
388
400
412
406
品種乙
419
403
412
418
408
423
400
413
分別求品種甲和品種乙的每公頃產量的樣本平均數(shù)和樣本方差;根據(jù)試驗結果,你認為應該種植哪一品種?
附:樣本數(shù)據(jù)的的樣本方差,其中為樣本平均數(shù).

查看答案和解析>>

(本小題8分)規(guī)定記號“※”表示一種運算,即,
.
(1)求函數(shù)的表達式和它的最小正周期;
(2)若函數(shù)處取到最大值,求的值

查看答案和解析>>


同步練習冊答案