題目列表(包括答案和解析)
f(x2)-f(x1) |
x2-x1 |
f(b)-f(a) |
b-a |
b-a |
b |
b |
a |
b-a |
a |
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線(xiàn)AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線(xiàn),所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線(xiàn)與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得.如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
一、選擇題:每小題5分,共60分.
BDCBB DCBCB AA
二、填空題:每小題4分,共16分.
13. 300 14.(文),(理)3。 ⒖ ⒗①③④.
三、解答題:
17.解:(Ⅰ)∵ =(sinB,1-cosB) , 且與向量=(2,0)所成角為
∴ ,∴ tan = , 又∵ 0<B<p Þ 0< < ,
∴ = ,∴ B = 。
(Ⅱ)由(1)可得A + C = ,
∴, 8分
∵,∴, 10分,∴,
,當(dāng)且僅當(dāng)。 12分
18.(文科))解:設(shè)既會(huì)唱歌又會(huì)跳舞的有x人,則文娛隊(duì)中共有(7-x)人,那么只會(huì)一項(xiàng)的人數(shù)是(7-2 x)人. (I)∵,∴.
即,∴.∴x=2. 故文娛隊(duì)共有5人.(8分)
(II) .(12分)
(理科)解:(Ⅰ) 甲得66分(正確11題)的概率為,……2分
乙得54分(正確9題)的概率為,……4分
顯然,即甲得66分的概率與乙得54分的概率一樣大. ……6分
(Ⅱ)設(shè)答錯(cuò)一題倒扣x分,則學(xué)生乙選對(duì)題的個(gè)數(shù)為隨機(jī)選擇20個(gè)題答對(duì)題的個(gè)數(shù)的期望為,得分為,
,令,得,
即每答錯(cuò)一題應(yīng)該倒扣2分 ……12分
19.解:(Ⅰ)取BD中點(diǎn)N.連AN、MN. 就是異面直線(xiàn)AM與BC所成的角,在中, (4分)
(Ⅱ)取BE中點(diǎn)P.連AP、PM,作于過(guò)作于連MH. , ,即AB 的平面角,在AMP中,
在ABP中,
二面角的大小,為 (8分)
(Ⅲ)若將圖(1)與圖(2)面ACD重合,該幾何體是5面體
這斜三棱柱的體積=3VA-BCD=3´´´= (12分)
20.(文科) (Ⅰ) ∵-(y+3ax)+(x3-1)=0,∴=(y+3ax)-(x3-1)
∴(y+3ax)+[-(x3-1)]=1,即y=f(x)=x3-3ax………………………2分
∴f/(x)=3x2-
當(dāng)a≤0時(shí),f/(x)=3(x2-a)≥0對(duì)x∈R恒成立,f(x)的單調(diào)區(qū)間為(-∞,+∞)
當(dāng)a>0時(shí),f/(x)>0,x<-或x>
f/(x)<0得-<x<…………………………………………6分
此時(shí),函數(shù)f(x)在(-∞,-)和(,+∞)上是增函數(shù),
在(-,)上是減函數(shù)……………………………………8分
(Ⅱ)∵a=1,∴f/(x)=3x2-3,直線(xiàn)4x+y+m=0的斜率為-4………………9分
假設(shè)f/(x)=-4,即3x2+1=0無(wú)實(shí)根
∴直線(xiàn)4x+y+m=0不可能是函數(shù)f(x)圖象的切線(xiàn)………………………………12分
(理科)(Ⅰ)∵-[y+
由于A、B、C三點(diǎn)共線(xiàn) 即[y+
∴y=f(x)=ln(x+1)+1-
f /(x)=,得f /(1)=,故f(x)=ln(x+1)…………………………………4分
(Ⅱ)令g(x)=f(x)-,由g/(x)=-=
∵x>0,∴g/(x)>0,∴g(x)在(0,+∞)上是增函數(shù)………………6分
故g(x)>g(0)=0
即f(x)>………………………………………………………………8分
。á螅┰坏仁降葍r(jià)于x2-f(x2)≤m2-2bm-3
令h(x)=x2-f(x2)=x2-ln(1+x2),由h/(x)=x-=…………………10分
當(dāng)x∈[-1,1]時(shí),h(x)max=0,∴m2-2bm-3≥0
令Q(b)=m2-2bm-3,則
得m≥3或m≤-3……………12分
21.解:(I)由
因直線(xiàn)相切 ,故所求橢圓方程為 (II)當(dāng)L與x軸平行時(shí),以AB為直徑的圓的方程:
當(dāng)L與x軸平行時(shí),以AB為直徑的圓的方程:由
即兩圓相切于點(diǎn)(0,1)
因此,所求的點(diǎn)T如果存在,只能是(0,1).事實(shí)上,點(diǎn)T(0,1)就是所求的點(diǎn),證明如下。
當(dāng)直線(xiàn)L垂直于x軸時(shí),以AB為直徑的圓過(guò)點(diǎn)T(0,1)
若直線(xiàn)L不垂直于x軸,可設(shè)直線(xiàn)L:
由
記點(diǎn)、
∴TA⊥TB,即以AB為直徑的圓恒過(guò)點(diǎn)T(0,1),故在坐標(biāo)平面上存在一個(gè)定點(diǎn)T(0,1)滿(mǎn)足條件.
22.(文科)解:(I)∵. ∴曲線(xiàn)在點(diǎn)處的切線(xiàn)ln的斜率為.
∴切線(xiàn)ln的方程為. (2分)
令得 ,∴.
依題意點(diǎn)在直線(xiàn)上,∴ 又. (4分)
∴數(shù)列是1為首項(xiàng),為公比的等比數(shù)列. ∴. (5分)
(Ⅱ)由已知.
∴. ①
. ②
①―②得
. (9分)
∴ (10分)
又時(shí),.
又當(dāng)時(shí),. ∴.∴當(dāng)時(shí),.
∴ ∴. (13分)綜上. (14分)
22.(理科)解: (Ⅰ)∵f(1)=1,∴f(x)=ea-1=1 ∴a=1 ……2分
(Ⅱ) x∈(0,1)時(shí),f(x)=xe,
f'(x)=e+xe(-2x+a)=(-2x2+ax+1)e,……3分
f'(x)≥0,
∵t(0)=1∴-2x2+ax+1>0在(0,1)恒成立Þ t (1) ≥
∴當(dāng)a≥1時(shí),f(x)在(0,1)上是增函數(shù); ……5分
又當(dāng)a=1時(shí),f(x)在(0,+∞)也是單調(diào)遞增的; ……6分
當(dāng)a>1時(shí),∵=ea-1>1=f(1),此時(shí),f(x)在(0,+∞)不一定是增函數(shù).…… 7分
(Ⅲ)當(dāng)x∈(0,1)時(shí),g(x)=lnf(x)+x2-ax=lnx,當(dāng)n≥2時(shí),
欲證:-<nk=1-n,
即證-1-2-3-……-(n-1)<ln<1+++……+-n
即需證
-1-2-3-……-(n-1)<ln1+ln+ln+……+ln<1+++……+-n
猜想1-<lnt<t-1(其中0<t<1).……8分
構(gòu)造函數(shù)h(t)=lnt-1+(0<t<1)
∵h(yuǎn)'(t)=-=<0,∴h(t)在(0,1)上時(shí)單調(diào)遞減的,
∴h(t)>h(1)=0,即有l(wèi)nt>1-……10分
設(shè)s(t)=lnt-t+1(0<t<1),
同理可證s(t)<0,∴1-<lnt<t-1(0<t<1)成立 ……12分
分別取t=,,……,(n≥2),所得n-1個(gè)不等式相加即得:
-1-2-3-…-(n-1)<ln1+ln+ln+……+ln<1+++……+-n
∴-<nk=1-n ……14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com