題目列表(包括答案和解析)
(本小題滿分13分)2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米. 某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 |
PM2.5(微克/立方米) |
頻數(shù)(天) |
頻 率 |
第一組 |
(0,15] |
4 |
0.1 |
第二組 |
(15,30] |
12 |
|
第三組 |
(30,45] |
8 |
0.2 |
第四組 |
(45,60] |
8 |
0.2 |
第五組 |
(60,75] |
0.1 |
|
第六組 |
(75,90) |
4 |
0.1 |
(Ⅰ)試確定的值,并寫(xiě)出該樣本的眾數(shù)和中位數(shù)(不必寫(xiě)出計(jì)算過(guò)程);
(Ⅱ)完成相應(yīng)的頻率分布直方圖.
(Ⅲ)求出樣本的平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由.
本小題滿分12分)設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b, b與c的等差中項(xiàng)。
(1)已知①a=1、b=2、c=4,試計(jì)算的值;
②a=-1、b= 、c="-" ,試計(jì)算的值
(2)試推測(cè)與2的大小關(guān)系,并證明你的結(jié)論。
(本小題滿分14分)已知數(shù)列及函數(shù)f(x)=,,對(duì)于任意均有 ⑴試計(jì)算的值.⑵若,求數(shù)列的通項(xiàng)公式.⑶試比較與的大小.
為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進(jìn)行技術(shù)改革.經(jīng)調(diào)查測(cè)算,產(chǎn)品當(dāng)年的產(chǎn)量萬(wàn)件與投入技術(shù)改革費(fèi)用萬(wàn)元()滿足(為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當(dāng)年的產(chǎn)量只能是1萬(wàn)件.已知2013年生產(chǎn)該產(chǎn)品的固定收入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元.由于市場(chǎng)行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品生產(chǎn)成本的倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(Ⅰ)試確定的值,并將2013年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為技術(shù)改革費(fèi)用萬(wàn)元的函數(shù)(利潤(rùn)=銷售金額―生產(chǎn)成本―技術(shù)改革費(fèi)用);
(Ⅱ)該企業(yè)2013年的技術(shù)改革費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
一 、選擇題
1.C. 2.A. 3.A. 4.A. 5.A. 6.C. 7.A. 8.A. 9.C. 10.D. 11.C.12.D.
一、 填空題
13.. 14.2. 15.16. 16.13.
三、解答題
17.(理科) (1)由(1+tanA)(1+tanB)=2,得
tanA+tanB=1-tanAtanB,
即tan(A+B)=1.
∵A、B為△ABC內(nèi)角, ∴A+B=. 則 C=(定值).
(2)已知△ABC內(nèi)接于單位圓, ∴△ABC外接圓半徑R=1.
∴由正弦定理得:,,.
則△ABC面積S===
==
==.
∵ 0<B<, ∴.
故 當(dāng)時(shí),△ABC面積S的最大值為.
(文科)。1),
,,,∴ .
∴ 向量和的夾角的大小為.
(2).
以和為鄰邊的平行四邊形的面積,
據(jù)此猜想,的幾何意義是以、為鄰邊的平行四邊形的面積.
18. (1)學(xué)生甲恰好抽到3道歷史題,2道地理題的概率為
.
(2)若學(xué)生甲被評(píng)為良好,則他應(yīng)答對(duì)5道題或4道題
而答對(duì)4道題包括兩種情況:①答對(duì)3道歷史題和1道地理(錯(cuò)一道地理題);②答對(duì)2道歷史題和2道地理題(錯(cuò)一道歷史題)。
設(shè)答對(duì)5道記作事件A;
答對(duì)3道歷史題,1道地理題記作事件B;
答對(duì)2道歷史題,2道地理題,記作事件C;
,
,
.
∴甲被評(píng)為良好的概率為:
.
19. (1)延長(zhǎng)AC到G,使CG=AC,連結(jié)BG、DG,E是AB中點(diǎn),.
故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.
(2)設(shè)C到平面ABD的距離為h
20. (1).
(2) 由(1)知:,故在是增函數(shù).
又對(duì)于一切恒成立.
由定理知:存在
由(1)知:
由的一般性知:.
21. (1)以中點(diǎn)為原點(diǎn),所在直線為軸,建立平面直角坐標(biāo)系,則.
設(shè),由得,此即點(diǎn)的軌跡方程.
(2)將向右平移一個(gè)單位,再向下平移一個(gè)單位后,得到圓,
依題意有.
(3)不妨設(shè)點(diǎn)在的上方,并設(shè),則,
所以,由于且,
故.
22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x.
∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴-f(x)+g(x)=a-x .
∴f(x)=,g(x)=.
⑵是R上的減函數(shù),
∴y=f -1(x)也是R上的減函數(shù).
又
⑶
n>2,當(dāng)上是增函數(shù).是減函數(shù);
上是減函數(shù).是增函數(shù).
(文科)。1)∵函數(shù)在和時(shí)取得極值,∴-1,3是方程的兩根,
∴
(2),當(dāng)x變化時(shí),有下表
x
(-∞,-1)
-1
(-1,3)
3
(3,+∞)
f’(x)
+
0
-
0
+
f(x)
ㄊ
Max
c+5
ㄋ
Min
c-27
ㄊ
而時(shí)f(x)的最大值為c+54.
要使f(x)<2|c|恒成立,只要c+54<2|c|即可.
當(dāng)c≥0時(shí)c+54<
當(dāng)c<0時(shí)c+54<-
∴c∈(-∞,-18)∪(54,+∞).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com