(1)若.求x的取值集合D, 查看更多

 

題目列表(包括答案和解析)

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時,
f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=
x
是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性且存在區(qū)間[a,b]⊆D(其中a<b)使當(dāng)x∈[a,b]時,f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的“正函數(shù)”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=x3是正函數(shù),試求f(x)的所有等域區(qū)間;
(2)若g(x)=
x+2
+k
是正函數(shù),試求實數(shù)k的取值范圍;
(3)是否存在實數(shù)a,b(a<b<1)使得函數(shù)f(x)=|1-
1
x
|
是[a,b]上的“正函數(shù)”?若存在,求出區(qū)間[a,b],若不存在,說明理由.

查看答案和解析>>

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時,
f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)數(shù)學(xué)公式是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性且存在區(qū)間[a,b]⊆D(其中a<b)使當(dāng)x∈[a,b]時,f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的“正函數(shù)”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=x3是正函數(shù),試求f(x)的所有等域區(qū)間;
(2)若數(shù)學(xué)公式是正函數(shù),試求實數(shù)k的取值范圍;
(3)是否存在實數(shù)a,b(a<b<1)使得函數(shù)數(shù)學(xué)公式是[a,b]上的“正函數(shù)”?若存在,求出區(qū)間[a,b],若不存在,說明理由.

查看答案和解析>>

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時,
f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
(2)試探究是否存在實數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

 

一、選擇題

1.D   2.C   3.B   4.A   5.B   6.A   7.C   8.C   9.C   10.B

二、填空題

11.   12.0   13.   14.   15.②③

三、解答題

16.(1)由

   (2)

的最大值為,此時x =1.

17.(1)

       (2)圖形如圖

     

     

     

     

     

       (3)

    18.(1)三個月中,該養(yǎng)殖中總損失的金額為:

       (2)∵該養(yǎng)殖戶第一個月實際損失為(萬元)

    第二個月實際損失為:(萬元)

    第三個月實際損失為:(萬元)

    該養(yǎng)殖戶在三個月中實際總損失為:

    19.(1)

    當(dāng)

    n = 1時也適合    

       (2)設(shè)ln方程為:  由有:

    ∵直線ln與拋物有且只有一個交點,

      

       (3)

    20.(1)設(shè)

       (2)

    故當(dāng)

    ∴曲線C上的解析式為:

       (3)

    同理可得:

            

    21.設(shè)二次三項式為 依題意有x1x2,則

        又為整系數(shù)二次三項式

        ∴f (0),f (1)均為整數(shù),進而有f (0)≥1,f (1)≥1,故f (0) f (1)≥1

        又

        由x1x2知兩個不等式等號不能同時成立,

       

       


    同步練習(xí)冊答案