18. 有A.B.C.D.E共5個(gè)口袋.每個(gè)口袋裝有大小和質(zhì)量均相同的4個(gè)紅球和2個(gè)黑球.現(xiàn)每次從其中一個(gè)口袋中摸出3個(gè)球.規(guī)定:若摸出的3個(gè)球恰為2個(gè)紅球和1個(gè)黑球.則稱為最佳摸球組合. (1)求從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合的概率, (2)現(xiàn)從每個(gè)口袋中摸出3個(gè)球.求恰有3個(gè)口袋中摸出的球是最佳摸球組合的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)   

某電視生產(chǎn)廠家有A、B兩種型號(hào)的電視機(jī)參加家電下鄉(xiāng)活動(dòng).若廠家投放A、B型號(hào)電視機(jī)的價(jià)值分別為p、q萬(wàn)元,農(nóng)民購(gòu)買電視機(jī)獲得相應(yīng)的補(bǔ)貼分別為已知廠家把價(jià)值為10萬(wàn)元的A、B兩種型號(hào)的電視機(jī)投放市場(chǎng),且A、B兩種型號(hào)的電視機(jī)投放金額都不低于1萬(wàn)元(精確到0.1,參考數(shù)據(jù):).

(1)請(qǐng)你制定一個(gè)投放方案,使得在這次活動(dòng)中農(nóng)民得到的補(bǔ)貼最多,并求出其最大值;

(2)討論農(nóng)民得到的補(bǔ)貼隨廠家投放B型號(hào)電視機(jī)金額的變化而變化的情況.

 

查看答案和解析>>

(本小題滿分12分)

中,角A、B、C的對(duì)邊分別為,已知,且

   (1)求角C的大;

   (2)求ABC的面積.

 

查看答案和解析>>

(本小題滿分12分)

在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且(2a+c)cosB+bcosC=0.

  (Ⅰ)求角B的值;

  (Ⅱ)已知函數(shù)f(x)=2cos(2x-B),將f(x)的圖象向左平移后得到函數(shù)g(x)的圖象,求g(x)的單調(diào)增區(qū)間.

 

 

查看答案和解析>>

(本小題滿分12分)△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a,b,c成等比數(shù)列,

   (Ⅰ)求的值;

   (Ⅱ)設(shè)的值。

 

查看答案和解析>>

(本小題滿分12分) 已知的角A、B、C所對(duì)的邊分別是

設(shè)向量,

(Ⅰ)若,求證:為等腰三角形;

(Ⅱ)若,邊長(zhǎng),,求的面積.

 

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非選擇題,共100分)

二、填空題

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答題

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在時(shí),

   

   

    在時(shí),為減函數(shù)

    從而的單調(diào)遞減區(qū)間為;…………(文8分)

   (2)(理科)  

    當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

    同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

   (3)當(dāng),變換過(guò)程如下:

    1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

    2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

    3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

   (其它的變換方法正確相應(yīng)給分)

17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    為直線B1C與平面ABC所成的角,即

    過(guò)點(diǎn)A作AM⊥BC于M,過(guò)M作MN⊥B1C于N,加結(jié)AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

    設(shè)AB=BB1=

    在Rt△B1BC中,BC=BB1

  

    即二面角B―B1C―A的正切值為 …………(文12分)

   (3)(理科)過(guò)點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

    ∠A1CH為直線A1C與平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

  ………………………………(6分)

   (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

  ……………………………………(12分)

   (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

  ………………………………………(6分)

   (2)可能的取值為0,3,6;則

  甲兩場(chǎng)皆輸:

  甲兩場(chǎng)只勝一場(chǎng):

      <dfn id="hrule"><rt id="hrule"></rt></dfn>

    • <strong id="hrule"></strong>

      0

      3

      6

      P

       

        的分布列為

       

       

       

        …………………………(12分)

      19.解:(文科)(1)由

        函數(shù)的定義域?yàn)椋ǎ?,1)

        又

        

        …………………………………(6分)

         (2)任取、

        

        

        

        又

        ……(13分)

         (理科)(1)由

        

      又由函數(shù)

        當(dāng)且僅當(dāng)

        

        綜上…………………………………………………(6分)

         (2)

        

      ②令

      綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

      20.解:(1)的解集有且只有一個(gè)元素

        

        又由

        

        當(dāng)

        當(dāng)

           …………………………………(文6分,理5分)

         (2)         ①

          ②

      由①-②得

      …………………………………………(文13分,理10分)

         (3)(理科)由題設(shè)

             

             綜上,得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.……………………(理13分)

      21.解(1)

       ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

      當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

      整理得

       

      綜上可知:恒有.………………………………(文13分,理9分)

       


      同步練習(xí)冊(cè)答案