(2)設(shè).求數(shù)列的前n項和Tn; 查看更多

 

題目列表(包括答案和解析)

設(shè)等差數(shù)列{}的前n項和為S,且S3=2S2+4,a5=36.
(1)求,Sn;
(2)設(shè),,求Tn

查看答案和解析>>

設(shè)等差數(shù)列{ }的前n項和為Sn,且S4=4S2,
(1)求數(shù)列{}的通項公式;
(2)設(shè)數(shù)列{ }滿足,求{}的前n項和Tn;
(3)是否存在實數(shù)K,使得Tn恒成立.若有,求出K的最大值,若沒有,說明理由.

查看答案和解析>>

設(shè)數(shù)列的前n項和為Sn=2n2為等比數(shù)列,且
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列n項和Tn.

查看答案和解析>>

設(shè)等差數(shù)列{}的前n項和為S,且S3=2S2+4,a5=36.
(1)求,Sn;
(2)設(shè),,求Tn

查看答案和解析>>

設(shè)等差數(shù)列{ }的前n項和為Sn,且S4=4S2
(1)求數(shù)列{}的通項公式;
(2)設(shè)數(shù)列{ }滿足,求{}的前n項和Tn
(3)是否存在實數(shù)K,使得Tn恒成立.若有,求出K的最大值,若沒有,說明理由.

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非選擇題,共100分)

二、填空題

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答題

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在時,

   

   

    在時,為減函數(shù)

    從而的單調(diào)遞減區(qū)間為;…………(文8分)

   (2)(理科)  

    當(dāng)時,由得單調(diào)遞減區(qū)間為

    同理,當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

   (3)當(dāng),變換過程如下:

    1°將的圖象向右平移個單位可得函數(shù)的圖象。

    2°將所得函數(shù)圖象上每個點的縱坐標(biāo)擴大為原來的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

    3°再將所得圖象向上平移一個單位,可得的圖象……(12分)

   (其它的變換方法正確相應(yīng)給分)

17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    為直線B1C與平面ABC所成的角,即

    過點A作AM⊥BC于M,過M作MN⊥B1C于N,加結(jié)AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

    設(shè)AB=BB1=

    在Rt△B1BC中,BC=BB1

  

    即二面角B―B1C―A的正切值為 …………(文12分)

   (3)(理科)過點A1作A1H⊥平面B1AC于H,連結(jié)HC,則

    ∠A1CH為直線A1C與平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和1個黑球,其概率為

  ………………………………(6分)

   (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5次獨立重復(fù)試難,故所求概率為

  ……………………………………(12分)

   (理科)(1)設(shè)用隊獲第一且丙隊獲第二為事件A,則

  ………………………………………(6分)

   (2)可能的取值為0,3,6;則

  甲兩場皆輸:

  甲兩場只勝一場:

<samp id="r4cfn"><ins id="r4cfn"></ins></samp>
    <samp id="r4cfn"></samp>

    0

    3

    6

    P

     

      的分布列為

     

     

     

      …………………………(12分)

    19.解:(文科)(1)由

      函數(shù)的定義域為(-1,1)

      又

      

      …………………………………(6分)

       (2)任取、

      

      

      

      又

      ……(13分)

       (理科)(1)由

      

    又由函數(shù)

      當(dāng)且僅當(dāng)

      

      綜上…………………………………………………(6分)

       (2)

      

    ②令

    綜上所述實數(shù)m的取值范圍為……………(13分)

    20.解:(1)的解集有且只有一個元素

      

      又由

      

      當(dāng)

      當(dāng)

         …………………………………(文6分,理5分)

       (2)         ①

        ②

    由①-②得

    …………………………………………(文13分,理10分)

       (3)(理科)由題設(shè)

           

           綜上,得數(shù)列共有3個變號數(shù),即變號數(shù)為3.……………………(理13分)

    21.解(1)

     ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時,顯然滿足題意

    當(dāng)AB的斜率不為0時,設(shè),AB方程為代入橢圓方程

    整理得

     

    綜上可知:恒有.………………………………(文13分,理9分)

     


    同步練習(xí)冊答案