(12)已知函數. 的圖象如圖所示.那么 查看更多

 

題目列表(包括答案和解析)

7、已知函數f(x)的導函數f′(x)的圖象如圖所示,那么函數f(x)的圖象最有可能的是( 。

查看答案和解析>>

精英家教網已知函數f(x)=Asin(ωx+φ)的部分圖象如圖所示,那么函數f(x)的解析式可以是( 。
A、f(x)=sin(2x+
π
8
)
B、f(x)=
2
sin(2x-
π
8
)
C、f(x)=
2
sin(2x-
π
4
)
D、f(x)=
2
sin(2x+
π
4
)

查看答案和解析>>

已知函數f(x)的定義域[-1,5],部分對應值如表
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導函數y=f′(x)的圖象如圖所示
下列關于函數f(x)的命題;
①函數f(x)的值域為[1,2];
②函數f(x)在[0,2]上是減函數;
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數y=f(x)-a有4個零點.
其中真命題為
(填寫序號)

查看答案和解析>>

已知函數f(x)的定義域為[-1,5],部分對應值如下表,f(x)的導函數y=f′(x)的圖象如圖所示,給出關于f(x)的下列命題:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函數y=f(x)在x=2時,取極小值;
②函數f(x)在[0,1]是減函數,在[1,2]是增函數;
③當1<a<2時,函數y=f(x)-a有4個零點;
④如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最小值為0,
其中所有正確命題的個數是( 。

查看答案和解析>>

已知函數f(x)的定義域為[-1,5],部分對應值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的導函數y=f′(x)的圖象如圖所示.下列關于函數f(x)的命題:
①函數f(x)在[0,1]上是減函數;
②如果當x∈[-1,t]時,f(x)最大值是2,那么t的最大值為4;
③函數y=f(x)-a有4個零點,則1≤a<2;
④已知(a,b)是y=
2013
f(x)
的一個單調遞減區(qū)間,則b-a的最大值為2.
其中真命題的個數是
3
3

查看答案和解析>>

 一、選擇題

 

 

 

二.填空題

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答題

(17)(本小題滿分10分)

解 :

(Ⅰ)

函數 的單調增區(qū)間為

(Ⅱ)

 

 

 

 

 (18)(本小題滿分12分)

解:(I)當

 (II)由(I)得

  

     

(19)(本小題滿分12分)

解:依題意,第四項指標抽檢合格的概率為 其它三項指標抽檢合格的概率均為

    

    (I)若食品監(jiān)管部門對其四項質量指標依次進行嚴格的檢測,恰好在第三項指標檢測結束

時,  能確定該食品不能上市的概率等于第一、第二項指標中恰有一項不合格而且第三項指標不合格的概率.

 

 

  (II)該品牌的食品能上市的概率等于四項指標都含格或第一、第二、第三項指標中僅有

一項不合格且第四項指標合格的概率.

 

(20)(本小題滿分12分)

解法1:(I)取A1C1中點D,連結B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是邊長為2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

過點D作DE⊥A1C,連BlE,則BlE⊥AlC

B1ED為所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中點,

     

  故所求二面角B1一A1C―C1的大小為arctan

解法2:(I)取AC中點O,連結BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如圖建立空間直角坐標系O一xyz

(Ⅱ)為平面A1B1C的一個法向量,

 

故二面角B1-A1C-C1的大小為arccos

(21)(本小題滿分12分)  。

  解:(I)曲線 在點( 0,)處的切線與 軸平行  

 

     (II)由c=0,方程 可化為

假沒存在實數b使得此方程恰有一個實數根,

  此方程恰有一個實根

②若b>o,則  的變化情況如下

 

 

③若b<o,則  的變化情況如下

 

綜合①②③可得,實數b的取值范圍是

 

(22)解:, (Ⅰ)由題意設雙曲線的標準方程為

由已知得

 

 雙曲線G的標準方程為

(Ⅱ)

 

 

化簡整理得,

www.ks5u.com

 


同步練習冊答案