(Ⅱ)若直線 與雙曲線 G相交于P.Q兩點(diǎn).且以PQ為直徑的圓過(guò)雙曲線G的右頂點(diǎn)D.求證:直線過(guò)定點(diǎn)'并求出該點(diǎn)的坐標(biāo) , 大慶市高三年級(jí)第一次教學(xué)質(zhì)量檢測(cè) 查看更多

 

題目列表(包括答案和解析)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為數(shù)學(xué)公式的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知橢圓G與雙曲線12x2-4y2=3有相同的焦點(diǎn),且過(guò)點(diǎn)P(1,
32
)

(1)求橢圓G的方程;
(2)設(shè)F1、F2是橢圓G的左焦點(diǎn)和右焦點(diǎn),過(guò)F2的直線l:x=my+1與橢圓G相交于A、B兩點(diǎn),請(qǐng)問(wèn)△ABF1的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,直角坐標(biāo)系xOy中,一直角三角形ABC,∠C=90°,B、C在x軸上且關(guān)于原點(diǎn)O對(duì)稱(chēng),D在邊BC上,BD=3DC,△ABC的周長(zhǎng)為12.若一雙曲線E以B、C為焦點(diǎn),且經(jīng)過(guò)A、D兩點(diǎn).
(1)求雙曲線E的方程;
(2)若一過(guò)點(diǎn)P(m,0)(m為非零常數(shù))的直線l與雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且
MP
PN
,問(wèn)在x軸上是否存在定點(diǎn)G,使
BC
⊥(
GM
GN
)
?若存在,求出所有這樣定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 一、選擇題

 

 

 

二.填空題

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答題

(17)(本小題滿分10分)

解 :

(Ⅰ)

函數(shù) 的單調(diào)增區(qū)間為

(Ⅱ)

 

 

 

 

 (18)(本小題滿分12分)

解:(I)當(dāng)

 (II)由(I)得

  

     

(19)(本小題滿分12分)

解:依題意,第四項(xiàng)指標(biāo)抽檢合格的概率為 其它三項(xiàng)指標(biāo)抽檢合格的概率均為

    

    (I)若食品監(jiān)管部門(mén)對(duì)其四項(xiàng)質(zhì)量指標(biāo)依次進(jìn)行嚴(yán)格的檢測(cè),恰好在第三項(xiàng)指標(biāo)檢測(cè)結(jié)束

時(shí),  能確定該食品不能上市的概率等于第一、第二項(xiàng)指標(biāo)中恰有一項(xiàng)不合格而且第三項(xiàng)指標(biāo)不合格的概率.

 

 

  (II)該品牌的食品能上市的概率等于四項(xiàng)指標(biāo)都含格或第一、第二、第三項(xiàng)指標(biāo)中僅有

一項(xiàng)不合格且第四項(xiàng)指標(biāo)合格的概率.

 

(20)(本小題滿分12分)

解法1:(I)取A1C1中點(diǎn)D,連結(jié)B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是邊長(zhǎng)為2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

過(guò)點(diǎn)D作DE⊥A1C,連BlE,則BlE⊥AlC

B1ED為所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中點(diǎn),

     

  故所求二面角B1一A1C―C1的大小為arctan

解法2:(I)取AC中點(diǎn)O,連結(jié)BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如圖建立空間直角坐標(biāo)系O一xyz

(Ⅱ)為平面A1B1C的一個(gè)法向量,

 

故二面角B1-A1C-C1的大小為arccos

(21)(本小題滿分12分)  。

  解:(I)曲線 在點(diǎn)( 0,)處的切線與 軸平行  

 

     (II)由c=0,方程 可化為

假?zèng)]存在實(shí)數(shù)b使得此方程恰有一個(gè)實(shí)數(shù)根,

  此方程恰有一個(gè)實(shí)根

②若b>o,則  的變化情況如下

 

 

③若b<o(jì),則  的變化情況如下

 

綜合①②③可得,實(shí)數(shù)b的取值范圍是

 

(22)解:, (Ⅰ)由題意設(shè)雙曲線的標(biāo)準(zhǔn)方程為

由已知得

 

 雙曲線G的標(biāo)準(zhǔn)方程為

(Ⅱ)

 

 

化簡(jiǎn)整理得,

www.ks5u.com

 


同步練習(xí)冊(cè)答案