當(dāng)時.在上單調(diào)遞減. 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知函數(shù)的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對一切的實數(shù),有成立,求的取值范圍; 
(3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù),的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對一切的實數(shù),有成立,求的取值范圍; 
(3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=(x2-ax)e-x(a∈R)。
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞減,求a的取值范圍;
(3)函數(shù)f(x)可否為R上的單調(diào)函數(shù),若是,求出a的取值范圍,若不是,請說明理由.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

(II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域為,則,

,

當(dāng)時,;當(dāng)時,

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時,函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時,恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

。

 

查看答案和解析>>


同步練習(xí)冊答案