[解]∵的右焦點 查看更多

 

題目列表(包括答案和解析)

已知雙曲線-=1的右焦點為(3,0),則該雙曲線的離心率等于

            B       C     D      

【解析】C正確.

 

查看答案和解析>>

橢圓的左、右焦點分別為,一條直線經過點與橢圓交于兩點.

⑴求的周長;

⑵若的傾斜角為,求的面積.

【解析】(1)根據橢圓的定義的周長等于4a.

(2)設,則,然后直線l的方程與橢圓方程聯立,消去x,利用韋達定理可求出所求三角形的面積.

 

查看答案和解析>>

已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設是其橢圓上的任意一點,當為鈍角時,求的取值范圍。

【解析】解:因為第一問中,利用橢圓的性質由   所以橢圓方程可設為:,然后利用

    

      橢圓方程為

第二問中,當為鈍角時,,    得

所以    得

解:(Ⅰ)由   所以橢圓方程可設為:

                                       3分

    

      橢圓方程為             3分

(Ⅱ)當為鈍角時,,    得   3分

所以    得

 

查看答案和解析>>

是橢圓的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為(       )

                                          

【解析】因為是底角為的等腰三角形,則有,,因為,所以,,所以,即,所以,即,所以橢圓的離心率為,選C.

 

查看答案和解析>>

如圖,橢圓E:的左焦點為F1,右焦點為F2,離心率。過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8

(Ⅰ)求橢圓E的方程。

(Ⅱ)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相較于點Q。試探究:在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由

【解析】

 

查看答案和解析>>


同步練習冊答案