A. B 1 C D.一l 查看更多

 

題目列表(包括答案和解析)

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1(θ為參數(shù))上一點(diǎn),求它到直線C2(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:++L+

查看答案和解析>>

ab、c為非零向量,lm為實(shí)數(shù),則命題:①b=la可推出a、b共線;②a、b共線可推出a=lb;③ab、c在同一平面內(nèi),可推出a=lb+mc。其中真命題個(gè)數(shù)為(。

A0   B1        C2        D3

 

查看答案和解析>>

ab、c為非零向量,l、m為實(shí)數(shù),則命題:①b=la可推出a、b共線;②a、b共線可推出a=lb;③a、b、c在同一平面內(nèi),可推出a=lb+mc。其中真命題個(gè)數(shù)為(。

A0   B1        C2        D3

 

查看答案和解析>>

a、b是兩條異面直線,它們所成的角為80°,過(guò)空間任一點(diǎn)P,作直線l,使l與a,b所成角均為50°,這樣的l共有幾條

[  ]

A.1條

B.2條

C.3條

D.4條

查看答案和解析>>

一、選擇題:本題考查基礎(chǔ)知識(shí)和基本運(yùn)算.  每題5分,滿(mǎn)分60分.

1.D      2。C       3.C       4.A       5.B      6.D 

7.A      8.B       9.A       10.C      11.B     12.A

二、填空題:本題考查基礎(chǔ)知識(shí)和基本運(yùn)算.  每題4分,滿(mǎn)分16分.

13.15  14.4  15 .  16

三、解答題:本題共6大題,共74分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

17.本題主要考查三角函數(shù)性質(zhì)、三角恒等變換等基本知識(shí),考查推理和運(yùn)算能力.

解:( I )

  

   (Ⅱ)    

 

 

 18.本題主要考查簡(jiǎn)單隨機(jī)抽樣,用古典概型計(jì)算事件發(fā)生的概率等基礎(chǔ)知識(shí),考查研究基本事件的能力,以及應(yīng)用意識(shí)。

     解:(I)設(shè)紅色球有個(gè),依題意得 紅色球有4個(gè).

(II)記“甲取出的球的編號(hào)比乙的大”為事件A

  所有的基本事件有(紅1,白1),(紅l,藍(lán)2),(紅1,藍(lán)3),(白l,紅1),

    (白1,藍(lán)2),(白1,藍(lán)3),(藍(lán)2,紅1),(藍(lán)2,自1),(藍(lán)2,藍(lán)3),

(藍(lán)3,紅1),(藍(lán)3,白1),(藍(lán)3,藍(lán)2),共12個(gè)

事件A包含的基本事件有(藍(lán)2,紅1),(藍(lán)2,白1),

(藍(lán)3,藍(lán)2),共5個(gè)

所以,

19.本題主要考查線面平行與垂直關(guān)系,及多面體的體積計(jì)算等基礎(chǔ)知識(shí),考查空間想象能力,邏輯思維能力和運(yùn)算能力.

(I)解:取CD的中點(diǎn)為F,連EF,則EF為的中位線. EF∥A1C

 又EF 平面A1BC,. EF∥平面A1BC

(II)證:四邊形ABCD為直角梯形且AD∥BC,

AB⊥BC,AD=2,AB=_BC=1.AC=CD=

AD2=AC2+CD2 為直角三角形  CD⊥AC又四棱   柱ABCD一A1B1C1D1的側(cè)棱  AAl垂直予底面ABCD,

CD 底面ABCD AAl⊥CD,又AA1與AC交于點(diǎn)A,

CD⊥平面A1ACCl    

  由CD⊥平面AlACCl,CD為四棱錐D-A1ACCl的底面    A1ACCl上的高,

  又AAl垂直于底面ABCD,四邊形A1ACC1為矩形

  四棱錐D―A1ACCI的體積

20.此題主要考查數(shù)列、等差、等比數(shù)列的概念、數(shù)列的遞推公式、數(shù)列前n項(xiàng)和的求法

  同時(shí)考查學(xué)生的分析問(wèn)題與解決問(wèn)題的能力,邏輯推理能力及運(yùn)算能力.

解:(I)

    

(Ⅱ)

21.本題主要考查直線方程與性質(zhì)、橢圓方程與性質(zhì)以及直線與曲線的位置關(guān)系等基礎(chǔ)知

  識(shí);考查考生數(shù)形結(jié)合思想、運(yùn)算求解能力、推理論證能力。

 

解:(I)

        

     

(Ⅱ)

 

22.本題主要考查二次函數(shù)及其性質(zhì)、導(dǎo)數(shù)的基本知識(shí),幾何意義及其應(yīng)用,同時(shí)考查考生分類(lèi)討論思想方法及化規(guī)的能力:

 

 解:(Ⅰ)

         

(Ⅱ)

 (Ⅲ)

 

 ①

    

③ 

  

方程有兩個(gè)不等的正根,存在兩條滿(mǎn)足條件的切線;

  

 

 

 


同步練習(xí)冊(cè)答案