題目列表(包括答案和解析)
(本小題滿分15分)
已知函數(shù),其中, (),若相鄰兩對(duì)稱軸間的距離不小于.
(Ⅰ)求的取值范圍;
(Ⅱ)在中,分別是角的對(duì)邊,,當(dāng)最大時(shí),,求的面積.
(本小題滿分15分)
某旅游商品生產(chǎn)企業(yè),2009年某商品生產(chǎn)的投入成本為1元/件,
出廠價(jià)為流程圖的輸出結(jié)果元/件,年銷售量為10000件,
因2010年國(guó)家長(zhǎng)假的調(diào)整,此企業(yè)為適應(yīng)市場(chǎng)需求,
計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每件投入成本增加的
比例為(),則出廠價(jià)相應(yīng)提高的比例為,
同時(shí)預(yù)計(jì)銷售量增加的比例為.
已知得利潤(rùn)(出廠價(jià)投入成本)年銷售量.
(Ⅰ)寫(xiě)出2010年預(yù)計(jì)的年利潤(rùn)
與投入成本增加的比例的關(guān)系式;
(Ⅱ)為使2010年的年利潤(rùn)比2009年有所增加,
問(wèn):投入成本增加的比例應(yīng)在什么范圍內(nèi)?
(本小題滿分15分)某地有三個(gè)村莊,分別位于等腰直角三角形ABC的三個(gè)頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計(jì)劃在BC邊的高AO上一點(diǎn)P處建造一個(gè)變電站. 記P到三個(gè)村莊的距離之和為y.
(1)設(shè),把y表示成的函數(shù)關(guān)系式;
(2)變電站建于何處時(shí),它到三個(gè)小區(qū)的距離之和最?
(本小題滿分15分)如圖,已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.
(本小題滿分15分)已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足,其前n項(xiàng)和為Sn.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)若S2為S1,Sm(m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
1
2
3
4
5
6
7
8
2
9
充分不必要
4
①②④
9
10
11
12
13
14
或0
點(diǎn)P在圓內(nèi)
①②③
15.解: (1)因?yàn)楦鹘M的頻率和等于1,故低于50分的頻率為:
所以低于50分的人數(shù)為(人)………………………………………….5分
(2)依題意,成績(jī)60及以上的分?jǐn)?shù)所在的第三、四、五、六組(低于50分的為第一組),
頻率和為
所以,抽樣學(xué)生成績(jī)的合格率是%.
于是,可以估計(jì)這次考試物理學(xué)科及格率約為%……………………………………9分.
(3)“成績(jī)低于50分”及“[50,60)”的人數(shù)分別是6,9。所以從成績(jī)不及格的學(xué)生中選兩人,他們成績(jī)至少有一個(gè)不低于50分的概率為: ……………14分
16.解:(1),
即,
∴,∴.
∵,∴.………………………………………………………………7分
(2)mn ,
|mn|.
∵,∴,∴.
從而.
∴當(dāng)=1,即時(shí),|mn|取得最小值.
所以,|mn|.………………………………………………………………14分
17.(1)證明:E、P分別為AC、A′C的中點(diǎn),
EP∥A′A,又A′A平面AA′B,EP平面AA′B
∴即EP∥平面A′FB …………………………………………7分
(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC
∴BC⊥A′E,∴BC⊥平面A′EC
BC平面A′BC
∴平面A′BC⊥平面A′EC …………………………………………14分
注:直角三角形條件在證這兩問(wèn)時(shí)多余了,可直接用兩側(cè)面的直角三角形證明即可。
18.解:(1)取弦的中點(diǎn)為M,連結(jié)OM
由平面幾何知識(shí),OM=1
得:,
∵直線過(guò)F、B ,∴則 …………………………………………6分
(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM
則
解得
∴ …………………………………………15分
(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)
19.
第(3)問(wèn)的構(gòu)造法可直接用第二種方法,作差后用代換即可。
20.解:(1)由方程組的解為不符合題設(shè),可證。………3分
(2)假設(shè)存在。
由方程組,得,即…5分
設(shè)(),可證:當(dāng)時(shí),單調(diào)遞減且;當(dāng)時(shí),單調(diào)遞減且。
,設(shè),則。………7分
①當(dāng)時(shí),,遞增,故,
于是,在上單調(diào)遞減。
設(shè),則,在上遞增,,即,所以。………9分
②當(dāng)時(shí),,遞減,故,
于是,在上單調(diào)遞減。
,在上遞減,,即,所以
由函數(shù)()的性質(zhì)可知滿足題設(shè)的不存在。………11分
(3)假設(shè)1,,是一個(gè)公差為的等差數(shù)列的第r、s、t項(xiàng),又是一個(gè)等比為等比數(shù)列的第r、s、t項(xiàng)。于是有:,
,
從而有, 所以。
設(shè),同(2)可知滿足題設(shè)的不存在………16分
注:證法太繁,在第二問(wèn)中,可用來(lái)表示,消去可得,則構(gòu)造易得到極值點(diǎn)為。
附加題參考答案
附1.(1)設(shè)M=,則有=,=,
所以且 解得,所以M=.…………………………5分
(2)任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P’(x’,y’).
因?yàn)?sub>,所以又m:,
所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分
附2.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(1),,由得.
所以.
即為圓的直角坐標(biāo)方程.
同理為圓的直角坐標(biāo)方程. ……………………………………6分
(2)由
相減得過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分
附3.(1)設(shè)P(x,y),根據(jù)題意,得.
化簡(jiǎn),得.………………………………………………………………5分
(2).……………………………………10分
附4.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知 ………………………………4分
(2)ξ可取1,2,3,4. ,
;………………8分
故ξ的分布列為
ξ
1
2
3
4
P
答:ξ的數(shù)學(xué)期望為 …………10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com