(1)證明:不存在.使得1..依次既是一個等差數(shù)列的前三項.又是一個等比數(shù)列的前三項. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
13
x3-2x2+3x
(x∈R)的圖象為曲線C.
(1)求過曲線C上任意一點的切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標的取值范圍;
(3)證明:不存在與曲線C同時切于兩個不同點的直線.

查看答案和解析>>

(2012•西城區(qū)二模)若An=
.
a1a2an
 (ai=0
或1,i=1,2,…,n),則稱An為0和1的一個n位排列.對于An,將排列
.
ana1a2an-1
記為R1(An);將排列
.
an-1ana1an-2
記為R2(An);依此類推,直至Rn(An)=An.對于排列An和Ri(An)(i=1,2,…,n-1),它們對應位置數(shù)字相同的個數(shù)減去對應位置數(shù)字不同的個數(shù),叫做An和Ri(An)的相關值,記作t(AnRi(An)).例如A3=
.
110
,則R1(A3)=
.
011
,t(A3,R1(A3))=-1.若t(An,Ri(An))=-1 (i=1,2,…,n-1),則稱An為最佳排列.
(Ⅰ)寫出所有的最佳排列A3;
(Ⅱ)證明:不存在最佳排列A5;
(Ⅲ)若某個A2k+1(k是正整數(shù))為最佳排列,求排列A2k+1中1的個數(shù).

查看答案和解析>>

已知向量
a
=(1,cosα),
b
=(1,sinβ),
c
=(3,1),且(
a
+
b
)∥
c

(1)若α=
π
3
,求cos2β的值;
(2)證明:不存在角α,使得等式|
a
+
c
|=|
a
-
c
|成立;
(3)求
b
c
-
a
2的最小值.

查看答案和解析>>

已知函數(shù)滿足下列條件:對任意的實數(shù)x1,x2都有 

    λ,其中λ是大于0的

    常數(shù).實數(shù)a0a,b滿足 b=a-λfa).

(Ⅰ)證明:λ≤1,并且不存在,使得;

(Ⅱ)證明: (b-a0)2≤(1-λ2)(a-a0)2;

(Ⅲ)證明: [f(b)]2≤(1-λ2)[f(a)]2.

查看答案和解析>>

a,b為常數(shù),:把平面上任意一點

 (ab)映射為函數(shù)

   (1)證明:不存在兩個不同點對應于同一個函數(shù);

   (2)證明:當,這里t為常數(shù);

   (3)對于屬于M的一個固定值,得,在映射F的作用下,M1作為象,求其原象,并說明它是什么圖象.

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

點P在圓內

①②③

 

 

15.解: (1)因為各組的頻率和等于1,故低于50分的頻率為:

所以低于50分的人數(shù)為(人)………………………………………….5分

(2)依題意,成績60及以上的分數(shù)所在的第三、四、五、六組(低于50分的為第一組),

頻率和為

所以,抽樣學生成績的合格率是%.

于是,可以估計這次考試物理學科及格率約為%……………………………………9分.

(3)“成績低于50分”及“[50,60)”的人數(shù)分別是6,9。所以從成績不及格的學生中選兩人,他們成績至少有一個不低于50分的概率為:  ……………14分

16.解:(1),

,∴

,∴.………………………………………………………………7分

(2)mn ,

|mn|

,∴,∴

從而

∴當=1,即時,|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)證明:E、P分別為AC、A′C的中點,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形條件在證這兩問時多余了,可直接用兩側面的直角三角形證明即可。

18.解:(1)取弦的中點為M,連結OM

由平面幾何知識,OM=1

     得:,  

∵直線過F、B ,∴     …………………………………………6分

(2)設弦的中點為M,連結OM

       解得     

                    …………………………………………15分

(本題也可以利用特征三角形中的有關數(shù)據(jù)直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)問的構造法可直接用第二種方法,作差后用代換即可。

20.解:(1)由方程組的解為不符合題設,可證。………3

(2)假設存在。

由方程組,得,即…5

),可證:當時,單調遞減且;當時,單調遞減且

,設,則。………7

①當時,,遞增,故

于是,上單調遞減。

,則,上遞增,,即,所以。………9

②當時,,遞減,故

于是,上單調遞減。

,上遞減,,即,所以

由函數(shù))的性質可知滿足題設的不存在。………11

(3)假設1,,是一個公差為的等差數(shù)列的第r、s、t項,又是一個等比為等比數(shù)列的第r、s、t項。于是有:,

從而有, 所以

,同(2)可知滿足題設的不存在………16

注:證法太繁,在第二問中,可用來表示,消去可得,則構造易得到極值點為。

 

 

 

 

 

附加題參考答案

附1.(1)設M=,則有=,=

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點P(x,y)經矩陣M變換后為點P’(x’,y’).

因為,所以又m:

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(1),由

所以

為圓的直角坐標方程. 

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

附3.(1)設P(x,y),根據(jù)題意,得

化簡,得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知               ………………………………4分

(2)ξ可取1,2,3,4.   ,

 ;………………8分

 故ξ的分布列為

ξ

1

2

3

4

P

                                                              

  答:ξ的數(shù)學期望為       …………10分

 

 

 


同步練習冊答案