(3)是否存在.使得1..依次既是一個等差數(shù)列的第r.s.t項(xiàng).又是一個等比數(shù)列的第r.s.t項(xiàng)?證明你的結(jié)論.附加題 查看更多

 

題目列表(包括答案和解析)

已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點(diǎn)P.
(1)求曲線Γ長度;
(2)當(dāng)θ=
π
2
時,求點(diǎn)C1到平面APB的距離;
(3)是否存在θ,使得二面角D-AB-P的大小為
π
4
?若存在,求出線段BP的長度;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且k≠0.
(1)若f(2)=3,求函數(shù)f(x)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù)g(x)=f(x)-mx,若g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在k使得函數(shù)f(x)在[-1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且k≠0.
(1)若f(2)=3,求函數(shù)f(x)的表達(dá)式;
(2)在(1)的條件下,設(shè)函數(shù)g(x)=f(x)-mx,若g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在k使得函數(shù)f(x)在[-1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

給定常數(shù),定義函數(shù),數(shù)列滿足.

(1)若,求;

(2)求證:對任意,;

(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.

 

查看答案和解析>>

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù),且對任意的正整數(shù)n,當(dāng)≥0時, 有[, ]=
[, ];當(dāng)<0時, 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

點(diǎn)P在圓內(nèi)

①②③

 

 

15.解: (1)因?yàn)楦鹘M的頻率和等于1,故低于50分的頻率為:

所以低于50分的人數(shù)為(人)………………………………………….5分

(2)依題意,成績60及以上的分?jǐn)?shù)所在的第三、四、五、六組(低于50分的為第一組),

頻率和為

所以,抽樣學(xué)生成績的合格率是%.

于是,可以估計這次考試物理學(xué)科及格率約為%……………………………………9分.

(3)“成績低于50分”及“[50,60)”的人數(shù)分別是6,9。所以從成績不及格的學(xué)生中選兩人,他們成績至少有一個不低于50分的概率為:  ……………14分

16.解:(1),

,

,∴

,∴.………………………………………………………………7分

(2)mn ,

|mn|

,∴,∴

從而

∴當(dāng)=1,即時,|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)證明:E、P分別為AC、A′C的中點(diǎn),

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形條件在證這兩問時多余了,可直接用兩側(cè)面的直角三角形證明即可。

18.解:(1)取弦的中點(diǎn)為M,連結(jié)OM

由平面幾何知識,OM=1

     得:  

∵直線過F、B ,∴     …………………………………………6分

(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

       解得     

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)問的構(gòu)造法可直接用第二種方法,作差后用代換即可。

20.解:(1)由方程組的解為不符合題設(shè),可證。………3

(2)假設(shè)存在。

由方程組,得,即…5

設(shè)),可證:當(dāng)時,單調(diào)遞減且;當(dāng)時,單調(diào)遞減且。

,設(shè),則。………7

①當(dāng)時,,遞增,故,

于是上單調(diào)遞減。

設(shè),則,上遞增,,即,所以。………9

②當(dāng)時,,遞減,故,

于是,上單調(diào)遞減。

,上遞減,,即,所以

由函數(shù))的性質(zhì)可知滿足題設(shè)的不存在。………11

(3)假設(shè)1,是一個公差為的等差數(shù)列的第r、s、t項(xiàng),又是一個等比為等比數(shù)列的第r、s、t項(xiàng)。于是有:

,

從而有, 所以。

設(shè),同(2)可知滿足題設(shè)的不存在………16

注:證法太繁,在第二問中,可用來表示,消去可得,則構(gòu)造易得到極值點(diǎn)為。

 

 

 

 

 

附加題參考答案

附1.(1)設(shè)M=,則有=,=,

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P’(x’,y’).

因?yàn)?sub>,所以又m:,

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(1),,由

所以

為圓的直角坐標(biāo)方程. 

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

附3.(1)設(shè)P(x,y),根據(jù)題意,得

化簡,得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知               ………………………………4分

(2)ξ可取1,2,3,4.   ,

 ;………………8分

 故ξ的分布列為

ξ

1

2

3

4

P

                                                              

  答:ξ的數(shù)學(xué)期望為       …………10分

 

 

 


同步練習(xí)冊答案