(2) 若|AN| .則當(dāng)AM.AN的長(zhǎng)度是多少時(shí).矩形花壇AMPN的面積最大?并求出最大面積. 查看更多

 

題目列表(包括答案和解析)

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求BAM上,DAN上,且對(duì)角線MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米,

(1) 要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(2) 若|AN| (單位:米),則當(dāng)AMAN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,對(duì)角線MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米,且受地理?xiàng)l件限制,|AN|長(zhǎng)不超過(guò)8米,設(shè)AN=x.
(1)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)若|AN|∈[3,4)(單位:米),則當(dāng)AM、AN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,對(duì)角線MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米,且受地理?xiàng)l件限制,|AN|長(zhǎng)不超過(guò)8米,設(shè)AN=x.
(1)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)若|AN|∈[3,4)(單位:米),則當(dāng)AM、AN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,對(duì)角線MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米,且受地理?xiàng)l件限制,|AN|長(zhǎng)不超過(guò)8米,設(shè)AN=x.
(1)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)若|AN|∈[3,4)(單位:米),則當(dāng)AM、AN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B在AM上,D在AN上,對(duì)角線MN過(guò)C點(diǎn),已知|AB|=3米,|AD|=2米,且受地理?xiàng)l件限制,|AN|長(zhǎng)不超過(guò)8米,設(shè)AN=x.
(1)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)若|AN|∈[3,4)(單位:米),則當(dāng)AM、AN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最大?并求出最大面積.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得,

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

當(dāng)時(shí), .                   ……3分

當(dāng)時(shí),,亦滿(mǎn)足上式.                            ……5分

∴數(shù)列的通項(xiàng)公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項(xiàng)為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

  • ……12分

     

    ……14分

     

     

    18.解:(1)由   …………………2分

    , ……4分

    ,

     

    函數(shù)的單調(diào)區(qū)間如下表:

    (-¥,-

    (-,1)

    1

    (1,+¥)

    0

    0

    ­

    極大值

    ¯

    極小值

    ­

    所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

    (2)

    當(dāng)時(shí),為極大值,而,則為最大值。

    要使恒成立,只需;

    解得。                                        ……………………14分

    19.解:(1)設(shè)所求直線的斜率為,其方程為,代入橢圓方程并化簡(jiǎn)得:

                    …………………………2分

            設(shè)直線l與橢圓交于P1x1,y1)、P2x2,y2),則,

    因?yàn)椋?,2)是直線l被橢圓所截得的線段的中點(diǎn),則

    ,解得。         …………………………………………6分

    由點(diǎn)斜式可得l的方程為x+2y-8=0.               ………………………………………8分

    (2)由(1)知,,     ………………………10分

           ……………14分

     

     

     

     

    20. 解:設(shè)AN的長(zhǎng)為x米(x >2)

                 ∵,∴|AM|=

    ∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

    (1)由SAMPN > 32 得  > 32 ,

             ∵x >2,∴,即(3x-8)(x-8)> 0

             ∴         即AN長(zhǎng)的取值范圍是……………………………8分

    (2)令y=,則y′= ……………………………………… 10分

    ∵當(dāng),y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

    ∴當(dāng)x=3時(shí)y=取得最大值,即(平方米)

    此時(shí)|AN|=3米,|AM|=米      ……………………………………………………… 14分

     

     

     


    同步練習(xí)冊(cè)答案