(I)求.的值, 查看更多

 

題目列表(包括答案和解析)

(I)已知函數(shù)f(x)=
3
sin2x-2cos2x-1,x∈R,求函數(shù)f(x)
的最小正周期;
(II)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=2
3
,C=
π
3
,若向量n=(1,sinA)與向量n=(2,sinB)共線,求a,b的值.

查看答案和解析>>

(I)已知函數(shù)的最小正周期;
(II)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且,若向量n=(1,sinA)與向量n=(2,sinB)共線,求a,b的值.

查看答案和解析>>

(03年新課程高考)已知常數(shù)a>0,向量c=(0,a),i=(1,0),經(jīng)過原點O以c+λi為方向向量的直線與經(jīng)過定點A(0,a)以i-2λc為方向向量的直線相交于點P,其中λ∈R.試問:是否存在兩個定點E、F,使得|PE|+|PF|為定值.若存在,求出E、F的坐標;若不存在,說明理由.

查看答案和解析>>

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點AB,O 為原點,且= -4.
(I)       求證:直線l 恒過一定點;
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設拋物線的焦點為F,∠AFB = θ,試問θ 能否等于120°?若能,求出相應的直線l 的方程;若不能,請說明理由.

查看答案和解析>>

(本小題滿分12分)
第26屆世界大學生夏季運動會將于2011年8月12日到23日在深圳舉行,為了搞好接待工作,組委會決定對禮儀小姐進行培訓.已知禮儀小姐培訓班的項目A與項目B成績抽樣統(tǒng)計表如下,抽出禮儀小姐人,成績只有、三種分值,設分別表示項目A與項目B成績.例如:表中項目A成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/37/e/1bwdl2.png" style="vertical-align:middle;" />分的共7+9+4=20人.已知的概率是

(I)求;
(II)若在該樣本中,再按項目B的成績分層抽樣抽出名禮儀小姐,則的禮儀小姐中應抽多少人?
(Ⅲ)已知,,項目B為3分的禮儀小姐中,求項目A得3分的人數(shù)比得4分人數(shù)多的概率.

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB  BAACD 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時,

時,

時,……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設,必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關閉,即煤礦第一次安檢不合格,整改后復查仍不合格,所以該煤礦被關閉的概率是,從而該煤礦不被關閉的概率是0.9,由題意,每家煤礦是否關閉是相互獨立的,所以5家煤礦都不被關閉的概率是

從而至少關閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      學科網(wǎng)(Zxxk.Com)連結(jié),則的中點,

在△中,,………4分

   且平面平面,

 ∴∥平面  ………6分

(2) 因為平面⊥平面,

平面∩平面,

 又,所以,⊥平面,

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面

平面,

所以  平面⊥平面  ………………12分

(20)解:設

,

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

其圖象的對稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                            

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵MP=MF2

∴動點M到定直線的距離等于它到定點F1(1,0)的距離,

∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線  ………………6分

∴點M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設 

 

,化簡得

    ………………11分

當且僅當 時等號成立   …………13分

∴當的取值范圍是

……14分

 

 

 


同步練習冊答案