又,--4分∴ PD⊥面ABCD---6分(Ⅱ)解:連結(jié)BD,設(shè)BD交AC于點O, 過O作OE⊥PB于點E,連結(jié)AE, 查看更多

 

題目列表(包括答案和解析)

中,,分別是角所對邊的長,,且

(1)求的面積;

(2)若,求角C.

【解析】第一問中,由又∵的面積為

第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C為內(nèi)角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面積為           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C為內(nèi)角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

已知在中,,,,解這個三角形;

【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又       

再又得到c。

解:由正弦定理得到:

                      ……4分

      ……8分

    

 

查看答案和解析>>

如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是,的中點.

(I)求證:平面;

(II)求證:

(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.

【解析】第一問利用線面平行的判定定理,,得到

第二問中,利用,所以

又因為,,從而得

第三問中,借助于等體積法來求解三棱錐B-EFC的體積.

(Ⅰ)證明: 分別是的中點,    

,.       …4分

(Ⅱ)證明:四邊形為正方形,

,

, ,

.    ………8分

(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

已知四棱錐P-ABCD,底面ABCD是、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.

(1)證明:MB平面PAD;

(2)求點A到平面PMB的距離.

 

查看答案和解析>>


同步練習(xí)冊答案