20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數的圖象經過三點.

(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數列{an}中, 

   (Ⅰ)求數列{an}的通項公式an;

   (Ⅱ)設數列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數,其中a為常數.

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

1.B       2.D      3.A      4.C       5.C       6.D      7.D      8.B       9.C       10.B

11.A     12.C

1.,所以選B.

2.,所以選D.

3.,所以選

4.,所以選C.

5.,所以選C.

6.,切線斜率

       ,所以選D.

7.觀察圖象.所以選D.

8.化為,所以選B.

9.關于對稱,,所以選C.

10.直線與橢圓有公共點,所以選B.

11.如圖,設,則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.分類涂色① 只用3種顏色,相對面同色,有1種涂法;② 用4種顏色,有種涂法;③ 用五種顏色,有種涂法.共有13種涂法.所以選C.

二、

13.7.由(舍去),

       項的余數為

14.依題設,又,點所形成的平面區(qū)域為邊長為1的正方形,其面積為1.

15.,由,得

      

16.

      

如圖,可設,又

       當面積最大時,.點到直線的距離為

三、

17.(1)

             

              由,

              的單調遞減區(qū)間為

       (2)

                  

                         

18.(1)的所有取值為0.8,0.9,1.0,1.125,1.25,其分布列為

0.8

0.9

1.0

1.125

1.25

0.2

0.15

0.35

0.15

0.15

              的所有取值為0.8,0.96,1.0,1,2,1.44,其分布列為     

0.8

0.96

1.0

1.2

1.44

0.3

0.2

0.18

0.24

0.08

(2)設實施方案一、方案二兩年后超過危機前出口額的概率為,,則

             

              ∴實施方案二兩年后超過危機前出口額的概率更大.

(3)方案一、方案二的預計利潤為、,則   

10

15

20

0.35

0.35

0.3

      

10

15

20

0. 5

0.18

0.32

                  

∴實施方案一的平均利潤更大

19.(1)設交于點

             

             

             

              從而,即,又,且

              平面為正三角形,的中點,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設的中點,連接,則,

              平面,過點,連接,則

              為二面角的平面角.

              在中,

              又

20.(1)由,得,則

              又為正整數,

             

              ,故

(2)

      

       ∴當時,取得最小值

21.(1)由

              ∴橢圓的方程為:

(2)由

      

       又

設直線的方程為:

              由此得.                                   ①

              設與橢圓的交點為,則

              www.ks5u.com由

              ,整理得

              ,整理得

              時,上式不成立,                ②

              由式①、②得

             

              ∴取值范圍是

22.(1)由

              令,則

              當時,上單調遞增.

                 的取值范圍是

       (2)

              ① 當時,是減函數.

              時,是增函數.

② 當時,是增函數.

綜上;當時,增區(qū)間為,,減區(qū)間為;

時,增區(qū)間為

 


同步練習冊答案