題目列表(包括答案和解析)
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線
∴,
∴
(2)令,當(dāng)時(shí),
令,得
時(shí),的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,
當(dāng)且,即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為
當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">
所以在區(qū)間上的最大值為。
設(shè)函數(shù).
(Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問(wèn)中利用函數(shù)的定義域?yàn)椋?,2),.
當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
第二問(wèn)中,利用當(dāng)時(shí), >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域?yàn)椋?,2),.
(1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
(2)當(dāng)時(shí), >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.
【解析】第一問(wèn)定義域?yàn)檎鏀?shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問(wèn)中, ().
.
因?yàn)?<a<2,所以,.令 可得.
對(duì)參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">. ………………………1分
.
令,則,所以或. ……………………3分
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.
令,則,所以.
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因?yàn)?<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當(dāng),即時(shí),
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當(dāng),即時(shí),在區(qū)間上為減函數(shù).
所以.
綜上所述,當(dāng)時(shí),;
當(dāng)時(shí),
已知函數(shù)在取得極值
(1)求的單調(diào)區(qū)間(用表示);
(2)設(shè),,若存在,使得成立,求的取值范圍.
【解析】第一問(wèn)利用
根據(jù)題意在取得極值,
對(duì)參數(shù)a分情況討論,可知
當(dāng)即時(shí)遞增區(qū)間: 遞減區(qū)間: ,
當(dāng)即時(shí)遞增區(qū)間: 遞減區(qū)間: ,
第二問(wèn)中, 由(1)知: 在,
,
在
從而求解。
解:
…..3分
在取得極值, ……………………..4分
(1) 當(dāng)即時(shí) 遞增區(qū)間: 遞減區(qū)間: ,
當(dāng)即時(shí)遞增區(qū)間: 遞減區(qū)間: , ………….6分
(2) 由(1)知: 在,
,
在
……………….10分
, 使成立
得:
已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)(),求函數(shù)的最大值的表達(dá)式;
【解析】第一問(wèn)中利用令,,
∴,
第二問(wèn)中,=
=
=令, ,則借助于二次函數(shù)分類討論得到最值。
(Ⅰ)解:令,,
∴,
∴的單調(diào)遞減區(qū)間為:…………………4分
(Ⅱ)解:=
=
=
令, ,則……………………4分
對(duì)稱軸
① 當(dāng)即時(shí),=……………1分
② 當(dāng)即時(shí),=……………1分
③ 當(dāng)即時(shí), ……………1分
綜上:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com