(2)求的通項公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項公式;
⑵設(shè),若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由

查看答案和解析>>

數(shù)列的通項公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測出計算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

求通項公式:

(1)的各項均為正數(shù),且滿足關(guān)系;求

(2)中,,求

(3)設(shè),數(shù)列n2時滿足

,,求

查看答案和解析>>

求通項公式:

(1)的各項均為正數(shù),且滿足關(guān)系,;求

(2)中,,求

(3)設(shè),數(shù)列在n≥2時滿足

,求

查看答案和解析>>

數(shù)列{an}的通項公式為an=
1
(n+1)2
(n∈N*),設(shè)f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達(dá)式;
(3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項和為g(n),求證:當(dāng)n∈N*時,g(2n)-
n
2
≥1.

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDABADBC

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.5    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:(1)

   (2)

   

16.(本題滿分13分)

解:  用A,B,C分別表示事件甲、乙、丙面試合格.

由題意知A,B,C相互獨立,且

P(A)=P(B)=P(C)=.

   (Ⅰ)至少有1人面試合格的概率是

  …………………6分

   (2)沒有人簽約的概率為

  ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)A1B,則D1E在側(cè)面ABB1A1上的射影是A1B,

又∵A1B⊥AB1,

連結(jié)DE,

∵D1E在底面ABCD上的射影是DE,E、F均為中點,

∴DE⊥AF,

∴D1E⊥AF

∵AB1∩AF=A

∴D1E⊥平面AB1F   …………………6分

   (2)∵C1C⊥平面EFA,連結(jié)AC交EF于H,

則AH⊥EF,

連結(jié)C1H,則C1H在底面ABCD上的射影是CH,

∴C1H⊥EF,

∴∠C1HA為二在角C1―EF―A的平面角,它是∠C1HC的鄰補角。

解法2:(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系。

<ins id="j66kc"><pre id="j66kc"><pre id="j66kc"></pre></pre></ins>
  •    (2)由已知得為平面EFA的一個法向量,

    ∵二面角C1―EF―A的平面角為鈍角,

    ∴二面角C1―EF―A的余弦值為   ………………13分

    18.(本題滿分13分)

    解:(1)

       (2)當(dāng)

       (3)令

         ①

         ②

    ①―②得   ………………13分

    19.(本題滿分14分)

    解:(1)由題意

      ………………3分

       (2)設(shè)此最小值為

       (i)若區(qū)間[1,2]上的增函數(shù),

       (ii)若上是增函數(shù);

    當(dāng)上是減函數(shù);

    ①當(dāng)

    ②當(dāng);

    ③當(dāng)

    綜上所述,所求函數(shù)的最小值

       ………………14分

    20.(本題滿分14分)

    解:(1)設(shè)橢圓C的方程:

       (2)由

            ①

    由①式得

     

     


    同步練習(xí)冊答案