能成為a>1的必要非充分條件的是 查看更多

 

題目列表(包括答案和解析)

能成為a>1的必要不充分條件的是(    )

①函數(shù)f(x)=loga(1-x)在(-∞,0)上是減函數(shù)②(a-2)2(a-1)>0  ③a(a-1)≥0  ④<1

A.①②             B.③④              C.②③             D.②④

查看答案和解析>>

已知方程x2+4ax+3a+1=0(a>1)的兩根為tanα、tanβ,且α,β,則tan的值是(  )

A.          B.-2           C.         D.或-2

 

查看答案和解析>>

函數(shù)y= (|x|+1)(a>1)的圖象大致是

 

查看答案和解析>>

函數(shù)y=a|x|(a>1)的圖象是(    )

查看答案和解析>>

曲線C是平面內(nèi)與兩個定點F1(-1,0)和F2(1,0)的距離的積等于常數(shù) a2 (a >1)的點的軌跡.給出下列三個結(jié)論:

① 曲線C過坐標原點;

② 曲線C關(guān)于坐標原點對稱;

③若點P在曲線C上,則△FPF的面積大于a。

其中,所有正確結(jié)論的序號是             。

 

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意,=1又a>0,所以a=1.

      (2)g(x)=,當(dāng)時,,無遞增區(qū)間;當(dāng)x<1時,,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當(dāng)0<t≤10時,

是增函數(shù),且f(10)=240

當(dāng)20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時,令,則t=4  當(dāng)20<t≤40時,令,則t≈28.57 

則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因為……7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時,根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當(dāng)x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當(dāng)x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當(dāng)x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當(dāng)x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

  • <ul id="c9cdv"></ul>
        • f(x)=

          loga[2-(x-2k)],x∈[2k,2k+1].

          (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

          ∴[f(x)]max= f(0)= =,∴a=4.

          當(dāng)x∈[-1,1]時,由f(x)>

              得

          f(x)是以2為周期的周期函數(shù),

          f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

          21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

          又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

          (2)∵g(x)==,D={x?x-1  }

          X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

           


          同步練習(xí)冊答案