題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一,選擇題:
D C B CC, CA BC B
二、填空題:
(11), -3, (12), 27 (13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:;
17, (1)由題意,=1又a>0,所以a=1.
(2)g(x)=,當時,=,無遞增區(qū)間;當x<1時,=,它的遞增區(qū)間是.
綜上知:的單調(diào)遞增區(qū)間是.
18, (1)當0<t≤10時,
是增函數(shù),且f(10)=240
當20<t≤40時,是減函數(shù),且f(20)=240 所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4 當20<t≤40時,令,則t≈28.57
則學生注意力在180以上所持續(xù)的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。
19, (I)……1分
根據(jù)題意, …………4分
解得. …………7分
(II)因為……7分
(i)時,函數(shù)無最大值,
不合題意,舍去. …………11分
(ii)時,根據(jù)題意得
解之得 …………13分
為正整數(shù),=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為
|