已知點A(7.0)在曲線上.且曲線C在點A處的切線與直線垂直.又當(dāng)時.函數(shù)有最小值. (I)求實數(shù)a.b.c的值, 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
且點P(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

已知雙曲線的中心在坐標(biāo)原點,兩個焦點為F1(-
7
,0),F(xiàn)2
7
,0),點P是此雙曲線上的一點,且
PF1
PF2
=0,|
PF1
|•|
PF2
|=4,該雙曲線的標(biāo)準(zhǔn)方程是( 。
A.
x2
4
-
y2
3
=1
B.
x2
3
-
y2
4
=1
C.
x2
5
-
y2
2
=1
D.
x2
2
-
y2
5
=1

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
且點P(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

(2011•洛陽二模)已知雙曲線的中心在坐標(biāo)原點,兩個焦點為F1(-
7
,0),F(xiàn)2
7
,0),點P是此雙曲線上的一點,且
PF1
PF2
=0,|
PF1
|•|
PF2
|=4,該雙曲線的標(biāo)準(zhǔn)方程是(  )

查看答案和解析>>

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標(biāo)為(0,2),則雙曲線上距點A距離最短的點的坐標(biāo)是
7
,1)
7
,1)

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意,=1又a>0,所以a=1.

      (2)g(x)=,當(dāng)時,,無遞增區(qū)間;當(dāng)x<1時,,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當(dāng)0<t≤10時,

是增函數(shù),且f(10)=240

當(dāng)20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時,令,則t=4  當(dāng)20<t≤40時,令,則t≈28.57 

則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因為……7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時,根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當(dāng)x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當(dāng)x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當(dāng)x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當(dāng)x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

      f(x)=

      loga[2-(x-2k)],x∈[2k,2k+1].

      (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

      ∴[f(x)]max= f(0)= =,∴a=4.

      當(dāng)x∈[-1,1]時,由f(x)>

          得

      f(x)是以2為周期的周期函數(shù),

      f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

      21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

      又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

      (2)∵g(x)==,D={x?x-1  }

      X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

       


      同步練習(xí)冊答案