① 求此雙曲線標準方程, 查看更多

 

題目列表(包括答案和解析)

如圖,F為雙曲線C:=1(a>0,b>0)的右焦點,P為雙曲線C右支上一點,且位于x軸上方,M為左準線(左準線x=,右準線為x=)上一點,O為坐標原點.已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.

(1)寫出雙曲線C的離心率e與λ的關(guān)系式;

(2)當λ=1時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B兩點,若|AB|=12,求此時的雙曲線方程.

查看答案和解析>>

精英家教網(wǎng)如圖,F(xiàn)為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點.P為雙曲線C右支上一點,且位于x軸上方,M為左準線上一點,O為坐標原點.已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當λ=1時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B點,若|AB|=12,求此時的雙曲線方程.

查看答案和解析>>

精英家教網(wǎng)如圖,F(xiàn)為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點.P為雙曲線C右支上一點,且位于x軸上方,M為左準線上一點,O為坐標原點.已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當λ=1時,設(shè)雙曲線右支與x軸的交點為R,且|PR|=2,求此時的雙曲線方程.

查看答案和解析>>

如圖,F(xiàn)為雙曲線C:的右焦點,P為雙曲線C右支上一點,且位于x軸上方,M為左準線上一點,O為坐標原點。已知四邊形OFPM為平行四邊形,|PF|=λ|OF|,
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當λ=1時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B點,若|AB|=12,求此時的雙曲線方程。

查看答案和解析>>

如圖,F(xiàn)為雙曲線C:的右焦點。P為雙曲線C右支上一點,且位于軸上方,M為左準線上一點,O為坐標原點。已知四邊形OFPM為平行四邊形,

(Ⅰ)寫出雙曲線C的離心率的關(guān)系式;

(Ⅱ)當=1時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B點,若,求此時的雙曲線方程。

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

www.ks5u.com   作根軸圖:

 

 

 

                                                     ………………………4′

   可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

              ………………………4′

的方程為: ………………………5′

為所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

當且僅當:………………………6′

       時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………5′

由弦長公式得:………………………7′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為,

由題得:   ∴………………………1′

于是可設(shè)雙曲線方程為:………………………2′

將點代入可得:,

∴該雙曲線的方程為:………………………4′

②直線方程可化為:

則它所過定點代入雙曲線方程:得:

………………………6′

又由

,…………7′

……………………8′

19.解:①設(shè)中心關(guān)于的對稱點為,

解得:

,又點在左準線上,

的方程為:……………………4′

②設(shè)、、

、成等差數(shù)列,

,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

,……………………9′

,

∴橢圓的方程為:

 

 

 


同步練習(xí)冊答案