左.右焦點.直線與橢圓交于兩點. 查看更多

 

題目列表(包括答案和解析)

已知的左、右焦點,O為坐標(biāo)原點,點在橢圓上,線段PF與軸的交點M滿足;

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)O是以為直徑的圓,一直線相切,并與橢圓交于不同的兩點A、B.當(dāng)面積S的取值范圍.

查看答案和解析>>

橢圓
x2
4
+
y2
3
=1
的左、右焦點分別為F1,F(xiàn)2,一條直線l經(jīng)過點F1與橢圓交于A,B兩點.
(1)求△ABF2的周長;
(2)若l的傾斜角為
π
4
,求△ABF2的面積.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,過F1的直線l與橢圓交于A、B兩點.
(1)如果點A在圓x2+y2=c2(c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;
(2)若函數(shù)y=
2
+logmx
,(m>0且m≠1)的圖象,無論m為何值時恒過定點(b,a),求
F2B
F2A
的取值范圍.

查看答案和解析>>

橢圓中心在原點,焦點在x軸上,離心率為
1
2
,橢圓左準(zhǔn)線與x軸交于E(-4,0),過E點作不與y軸垂直的直線l與橢圓交于A、B兩個不同的點(A在E,B之間)
(1)求橢圓方程;   (2)求△AOB面積的最大值; (3)設(shè)橢圓左、右焦點分別為
F1、F2,若有
F1A
F2B
,求實數(shù)λ,并求此時直線l的方程.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點的坐標(biāo)分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點分別為F1,F(xiàn)2,點P是其上的動點,
(1)當(dāng)△PF1F2內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標(biāo);
(2)若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點,證明直線AM與直線BN的交點在直線x=4上.

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

www.ks5u.com   作根軸圖:

 

 

 

                                                     ………………………4′

   可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

              ………………………4′

的方程為: ………………………5′

為所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

當(dāng)且僅當(dāng):………………………6′

       時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………5′

由弦長公式得:………………………7′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為,

由題得:   ∴………………………1′

于是可設(shè)雙曲線方程為:………………………2′

將點代入可得:,

∴該雙曲線的方程為:………………………4′

②直線方程可化為:

則它所過定點代入雙曲線方程:得:

………………………6′

又由,

,,…………7′

……………………8′

19.解:①設(shè)中心關(guān)于的對稱點為

解得:

,又點在左準(zhǔn)線上,

的方程為:……………………4′

②設(shè)、、、

、成等差數(shù)列,

,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

,……………………9′

,,

∴橢圓的方程為:

 

 

 


同步練習(xí)冊答案