C. D.[0.2] 查看更多

 

題目列表(包括答案和解析)

在[0,2π]內(nèi),使sinx>cosx成立的x的取值范圍是( 。

查看答案和解析>>

在[0,2π)上滿足sinx≤
1
2
的x的取值范圍是(  )

查看答案和解析>>

(0,
π
2
)
上是增函數(shù),且最小正周期為π的函數(shù)是( 。

查看答案和解析>>

在[0,2π]內(nèi),使sin2x>sinx的x的取值范圍是( 。

查看答案和解析>>

在[0,2]內(nèi),滿足sinx>cosx的x的取值范圍是( 。

A.(,)B.(,)C.(,)D.(,)

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個(gè)單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則

              平面,過(guò)點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

       

                    時(shí),時(shí),

                    處取得極小值

                                               ③

              由式①、②、③聯(lián)立得:

             

             (2)

                 ∴當(dāng)時(shí),上單調(diào)遞減,

              當(dāng)時(shí),

                    當(dāng)時(shí),在[2,3]上單調(diào)遞增,

      22.(1)由

                 ∴橢圓的方程為:

      (2)由

            

             又

      設(shè)直線的方程為:

                    由此得.                                   ①

                    設(shè)與橢圓的交點(diǎn)為,則

                    由

                    ,整理得

                    ,整理得

                    時(shí),上式不成立,          ②

              由式①、②得

             

              ∴取值范圍是

       

       

       


      同步練習(xí)冊(cè)答案