題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是,所以選B.
3.,所以選.
4.為鈍角或,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或,所以選B.
9.將左移個單位得,所以選A.
10.直線與橢圓有公共點,所以選B.
11.如圖,設,則,
,
,從而,因此與底面所成角的正弦值等于.所以選A.
12.畫可行域 可知符合條件的點是:共6個點,故,所以選D.
二、
13.185..
14.60..
15.,由,得
.
16..如圖:
如圖,可設,又,
.
當面積最大時,.點到直線的距離為.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設兩年后出口額恰好達到危機前出口額的事件為,則.
(2)設兩年后出口額超過危機前出口額的事件為,則.
19.(1)設與交于點.
從而,即,又,且
平面為正三角形,為的中點,
,且,因此,平面.
(2)平面,∴平面平面又,∴平面平面
設為的中點,連接,則,
平面,過點作,連接,則.
為二面角的平面角.
在中,.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
|