四棱錐中.底面為矩形.側(cè)面為正三角形.為的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAB為正三角形,AB=2,BC=
2
,PC⊥BD
,E為AB的中點(diǎn).
(1)證明:PE⊥平面ABCD;   (2)求二面角A-PD-B的大。

查看答案和解析>>

四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAB為正三角形,AB=2,BC=數(shù)學(xué)公式,E為AB的中點(diǎn).
(1)證明:PE⊥平面ABCD;  (2)求二面角A-PD-B的大小.

查看答案和解析>>

四棱錐P-ABCD的底面是矩形,底面ABCD是∠DAB=60°的菱形,側(cè)面PAD為正三角形,其所有平面垂直于底面ABCD

(Ⅰ)求證:ADPB;

(Ⅱ)若EBC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論。

查看答案和解析>>

四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAB為正三角形,AB=2,BC=,E為AB的中點(diǎn).
(1)證明:PE⊥平面ABCD;   (2)求二面角A-PD-B的大小.

查看答案和解析>>

四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAB為正三角形,AB=2,BC=,E為AB的中點(diǎn).
(1)證明:PE⊥平面ABCD;   (2)求二面角A-PD-B的大小.

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點(diǎn)是:共6個點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時,.點(diǎn)到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則,

              平面,過點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

     

                  時,時,

                  處取得極小值

                                             ③

            由式①、②、③聯(lián)立得:

           

           (2)

               ∴當(dāng)時,上單調(diào)遞減,

            當(dāng)時,

                  當(dāng)時,在[2,3]上單調(diào)遞增,

    22.(1)由

               ∴橢圓的方程為:

    (2)由,

          

           又

    設(shè)直線的方程為:

                  由此得.                                   ①

                  設(shè)與橢圓的交點(diǎn)為,則

                  由

                  ,整理得

                  ,整理得

                  時,上式不成立,          ②

            由式①、②得

           

            ∴取值范圍是

     

     

     


    同步練習(xí)冊答案