題目列表(包括答案和解析)
設(shè)關(guān)于x的函數(shù)的最小值為.
⑴寫出的表達式;w.w.w.k.s.5.u.c.o.m
⑵試確定能使的值,并求出此時函數(shù)的最大值.
已知函數(shù),設(shè),
.
(1)猜測并直接寫出的表達式;此時若設(shè),且關(guān)于的函數(shù)在區(qū)間上的最小值為,則求的值;
(2)設(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,,若 ,,其中,則
①當時,求;
②設(shè)為數(shù)列的前項和,若對于任意的正整數(shù),都有,求實數(shù)的取值范圍.
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是,所以選B.
3.,所以選.
4.為鈍角或,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或,所以選B.
9.將左移個單位得,所以選A.
10.直線與橢圓有公共點,所以選B.
11.如圖,設(shè),則,
,
,從而,因此與底面所成角的正弦值等于.所以選A.
12.畫可行域 可知符合條件的點是:共6個點,故,所以選D.
二、
13.185..
14.60..
15.,由,得
.
16..如圖:
如圖,可設(shè),又,
.
當面積最大時,.點到直線的距離為.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設(shè)兩年后出口額恰好達到危機前出口額的事件為,則.
(2)設(shè)兩年后出口額超過危機前出口額的事件為,則.
19.(1)設(shè)與交于點.
從而,即,又,且
平面為正三角形,為的中點,
,且,因此,平面.
(2)平面,∴平面平面又,∴平面平面
設(shè)為的中點,連接,則,
平面,過點作,連接,則.
為二面角的平面角.
在中,.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
|