5.設(shè)集合 查看更多

 

題目列表(包括答案和解析)

設(shè)集合A={(x,y)|
x2
4
+
y2
16
=1}
,B={(x,y)|y=3x},則A∩B的子集的個(gè)數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

8、設(shè)集合M={1,2,4,8},N={x|x是2的倍數(shù)},則M∩N=( 。

查看答案和解析>>

19、設(shè)集合A={3,5,6,8},集合B={4,5,7,8},則A∩B等于(  )

查看答案和解析>>

20、設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,則實(shí)數(shù)a,b必滿足( 。

查看答案和解析>>

21、設(shè)集合A={x||x-a|<1},B={x|1<x<5,x∈R},A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長(zhǎng)度是為,為半個(gè)周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域?yàn)?sub>!14分

19.解:(1)該同學(xué)投中于球但未通過(guò)考核,即投藍(lán)四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學(xué)通過(guò)考核的概率為

      ………………10分

    隨機(jī)變量X服從其數(shù)學(xué)期望

  …………14分

20.解:(1)設(shè)FD的中點(diǎn)為G,則TG//BD,而B(niǎo)D//CE,

    當(dāng)a=5時(shí),AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四邊形TGEC是平行四邊形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T為原點(diǎn),以射線TB,TC,TG分別為x,y,z軸,

建立空間直角坐標(biāo)系,則D(1,0,1),

              ………………6分

    • <form id="4q5g1"></form>

          則平面DEF的法向量n=(x,y,z)滿足:

          •  

                解之可得又平面ABC的法向量

            m=(0,0,1)

               

               即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

               (3)由P在DE上,可設(shè),……10分

                則

                               ………………11分

                若CP⊥平面DEF,則

                即

             

             

                解之得:                ……………………13分

                即當(dāng)a=2時(shí),在DE上存在點(diǎn)P,滿足DP=3PE,使CP⊥平面DEF!14分

            21.解:(1)因?yàn)?sub>        所以

                橢圓方程為:                          ………………4分

               (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

               

                代入       ………………6分

                設(shè)   ①

                              ……………………8分

                設(shè)AB的中點(diǎn)為M,則

                。

                 ……………………11分

                ,即存在這樣的直線l

                當(dāng)時(shí), k不存在,即不存在這樣的直線l;……………………14分

             

             

             

             

            22.解:(I) ……………………2分

                令(舍去)

                單調(diào)遞增;

                當(dāng)單調(diào)遞減。    ……………………4分

                為函數(shù)在[0,1]上的極大值。        ……………………5分

               (II)由

             ①        ………………………7分

            設(shè),

            依題意知上恒成立。

            都在上單調(diào)遞增,要使不等式①成立,

            當(dāng)且僅當(dāng)…………………………11分

               (III)由

            ,則

            當(dāng)上遞增;

            當(dāng)上遞減;

                    …………………………16分

             

             


            同步練習(xí)冊(cè)答案
            <dl id="4q5g1"></dl>