12.右圖是2009年CCTV青年歌手電視大賽上某一位選手得分的莖葉統(tǒng)計圖.去掉一個最高分和一個最低分后.所剩數(shù)據(jù)的方差為 . 查看更多

 

題目列表(包括答案和解析)

下圖是2010年CCTV青年歌手電視大賽上某一位選手得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為(    )。

查看答案和解析>>

(2010•廣東模擬)右圖是2009年我校校園歌手大賽比賽現(xiàn)場上七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為( 。

查看答案和解析>>

右圖是2009年我校校園歌手大賽比賽現(xiàn)場上七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為( )

A.83
B.84
C.85
D.86

查看答案和解析>>

右圖是2009年我校校園歌手大賽比賽現(xiàn)場上七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為( )

A.83
B.84
C.85
D.86

查看答案和解析>>

右圖是2009年我校校園歌手大賽比賽現(xiàn)場上七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為( )

A.83
B.84
C.85
D.86

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長度是為,為半個周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域為!14分

19.解:(1)該同學投中于球但未通過考核,即投藍四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學通過考核的概率為

      ………………10分

    隨機變量X服從其數(shù)學期望

  …………14分

20.解:(1)設FD的中點為G,則TG//BD,而BD//CE,

    當a=5時,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四邊形TGEC是平行四邊形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T為原點,以射線TB,TC,TG分別為x,y,z軸,

建立空間直角坐標系,則D(1,0,1),

              ………………6分

    則平面DEF的法向量n=(x,y,z)滿足:

<ul id="2hebd"></ul>

 

    解之可得又平面ABC的法向量

m=(0,0,1)

   

   即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

   (3)由P在DE上,可設,……10分

    則

                   ………………11分

    若CP⊥平面DEF,則

    即

 

 

    解之得:                ……………………13分

    即當a=2時,在DE上存在點P,滿足DP=3PE,使CP⊥平面DEF!14分

21.解:(1)因為        所以

    橢圓方程為:                          ………………4分

   (2)由(1)得F(1,0),所以。假設存在滿足題意的直線l,設l的方程為

   

    代入       ………………6分

    設   ①

                  ……………………8分

    設AB的中點為M,則

   

     ……………………11分

    ,即存在這樣的直線l

    當時, k不存在,即不存在這樣的直線l;……………………14分

 

 

 

 

22.解:(I) ……………………2分

    令(舍去)

    單調遞增;

    當單調遞減。    ……………………4分

    為函數(shù)在[0,1]上的極大值。        ……………………5分

   (II)由

 ①        ………………………7分

依題意知上恒成立。

都在上單調遞增,要使不等式①成立,

當且僅當…………………………11分

   (III)由

,則

上遞增;

上遞減;

        …………………………16分

 

 


同步練習冊答案