題目列表(包括答案和解析)
(本小題滿分10分)
已知函數(shù)y=Asin(wx+j)(A>0,w>0,0<j<p)最大值是2,最小正周期是,直線x=0是其圖象的一條對(duì)稱軸,求此函數(shù)的解析式.
函數(shù)y=Asin(wx+j)(w>0,A¹0)的圖象與函數(shù)y=Acos(wx+j)(w>0, A¹0)的圖象在區(qū)間(,+)上 ( )
A.至少有兩個(gè)交點(diǎn) B.至多有兩個(gè)交點(diǎn)
C.至多有一個(gè)交點(diǎn) D.至少有一個(gè)交點(diǎn)
函數(shù)y = Asin (wx + j)在同一周期內(nèi),當(dāng)x =時(shí), y取最大值2 ; 當(dāng)x = 時(shí), y取最小值–2 , 則該函數(shù)的解析式是 ( )
A.y = 2sin (x +). B.y = 2sin (2 x +).
C.y = 2sin (–). D.y = 2sin (2 x +).
函數(shù)y=Asin(wx+)(w>0,)的部分圖象如下,則函數(shù)表達(dá)式為 ( )
A. B.
C. D.
一、選擇題(每小題5分,共50分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
D
D
C
B
C
A
B
B
A
C
二、填空題(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.; 16.(4);
19.解:∵,,∴………………2分
∴,,………………8分
∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=………………12分
20.(1)f(x)
…………4分
,
由得,對(duì)稱軸方程為:………………6分
(2)由得,f(x)的單調(diào)遞減區(qū)間為:,k∈Z
………………9分
(3)由,得,則,
所以函數(shù)f(x)在區(qū)間上的值域?yàn)?sub>………………13分
21.解:(1)依題意,得,∴,∴,…………2分
∵最大值為2,最小值為-2,∴A=2∴,………………4分
∵圖象經(jīng)過(0,1),∴2sinj=1,即又∴,………………6分
∴………………7分
(2)∵,∴-2≤ f(x) ≤ 2
∴或解得,或………………12分
22.解:(1)
=2cos2x+cosx-1………………5分
(2)要使圖象至少有一公共點(diǎn),須使f(x)=g(x)在上至少有一解,
令t=cos x,∵x∈(0,p) ∴x與t一一對(duì)應(yīng),且t∈(-1,1),
即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分
整理得:t2-at+(2-a)=0
1°一解:f(1)?f(-1)=(3
2°兩解(含重根的情形):
,解得:,∴……11分
綜上所述:………………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com