⑤的圖象向右平移個單位可得的圖象, 查看更多

 

題目列表(包括答案和解析)

的圖象(  ),再作關于直線y=x對稱的圖象,可得到函數(shù)的圖象.

[  ]

A.先向左平行移動1個單位

B.先向右平行移動1個單位

C.先向上平行移動1個單位

D.先向下平行移動1個單位

查看答案和解析>>

的圖象(  ),再作關于直線y=x對稱的圖象,可得到函數(shù)的圖象.

[  ]

A.先向左平行移動1個單位
B.先向右平行移動1個單位
C.先向上平行移動1個單位
D.先向下平行移動1個單位

查看答案和解析>>

函數(shù)的圖象為C,如下結(jié)論中錯誤的是

   A. 圖象C關于直線對稱         

B. 圖象C關于點對稱

   C. 函數(shù)在區(qū)間內(nèi)是增函數(shù)

   D. 由的圖象向右平移個單位長度可以得到圖象C

查看答案和解析>>

函數(shù)的圖象如下圖所示.

(1)求解析式中的值; 

(2)該圖像可由的圖像先向_____(填“左”或“右”)平移_______個單位,再橫向拉伸到原來的_______倍.縱向拉伸到原來的______倍得到.

 

 

查看答案和解析>>

6.函數(shù)的圖象為C

①圖象關于直線對稱;

②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③由的圖象向右平移個單位長度可以得到圖象.

  (A)0                            (B)1                        (C)2                 (D)3

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空題(每小題4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e得,對稱軸方程為:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的單調(diào)遞減區(qū)間為:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

所以函數(shù)f(x)在區(qū)間6ec8aac122bd4f6e上的值域為6ec8aac122bd4f6e………………13分

 

21.解:(1)依題意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值為2,最小值為-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵圖象經(jīng)過(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使圖象至少有一公共點,須使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x與t一一對應,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°兩解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

綜上所述:6ec8aac122bd4f6e………………12分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案