(1)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)








⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線 有公共點(diǎn)時(shí),求△面積的最大值

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

1.B       2.A      3.C       4.B       5.A      6.B       7.D      8.C       9.C       1 0.B

11.B     12.D

【解析】

1.

2.

3.是方程的根,或8,又

      

4.

5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點(diǎn)與(0,0)連線的斜率,

      

6.       

7.連,設(shè)      平面

       與平面所成的角.       

      

8.據(jù)的圖象知          的解集為

9.由點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線一支.,

10.將命中連在一起的3槍看作一個(gè)整體和另外一槍命中的插入沒有命中的4槍留下的5個(gè)空檔,故有種.

11.設(shè),圓為最長弦為直徑,最短弦的中點(diǎn)為

12.幾何體的表面積是三個(gè)圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為

二、

13.    平方得

      

14.55        

      

15.1     互為反函數(shù),

       ,

      

16.              ,設(shè)

三、解答題

17.(1)的最大值為2,的圖象經(jīng)過點(diǎn)

,,

(2),

18.(1)∵當(dāng)時(shí),總成等差數(shù)列,

              即,所以對時(shí),此式也成立

              ,又,兩式相減,

              得,

              成等比數(shù)列,

       (2)由(1)得

             

             

19.(1)由題意知,袋中黑球的個(gè)數(shù)為

              記“從袋中任意摸出2個(gè)球,得到的都是黑球”為事件,則

       (2)記“從袋中任意摸出2個(gè)球,至少得到一個(gè)白球”為事件,設(shè)袋中白球的個(gè)數(shù)為,則(含)..∴袋中白球的個(gè)數(shù)為5.

20.(1)證明:

連接

,又

              即        平面

(2)方法1   取的中點(diǎn),的中點(diǎn),的中點(diǎn),或其補(bǔ)角是所成的角,連接斜邊上的中線,,

      

              在中,由余弦定理得

           ∴直線所成的角為

(方法2)如圖建立空間直角坐標(biāo)系

       則
             

      

      

    ∴直線所成的角為

(3)(方法l)

       平面,過,由三垂線定理得

              是二面角的平面角,

              ,又

中,,

∴二面角

(方法2)

在上面的坐標(biāo)系中,平面的法向量

設(shè)平面的法向量,則

解得

∴二面角

21.(1)

的最小值為,,又直線的斜率為

,故

       (2),當(dāng)變化時(shí),、的變化情況如下表:

0

0

極大

極小

           ∴函數(shù)的單調(diào)遞增區(qū)間是

              ,

           ∴當(dāng)時(shí),取得最小值,

              當(dāng)時(shí),取得最大值18.

21.(1)設(shè)

由拋物線定義,,

上,,又

         舍去.

∴橢圓的方程為

       (2)① 直線的方程為

              為菱形,,設(shè)直線的方程為

              由,得

在橢圓上,解得,設(shè),則,的中點(diǎn)坐標(biāo)為

為菱形可知,點(diǎn)在直線上,

∴直線的方程為

② ∵為菱形,且,

,∴菱形的面積

∴當(dāng)時(shí),菱形的面積取得最大值

 

 


同步練習(xí)冊答案