思路1:則由. 查看更多

 

題目列表(包括答案和解析)

小明和同桌小聰一起合作探索:如圖,一架5米長的梯子AB斜靠在鉛直的墻壁AC上,這時梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動多少米?

(1)小明的思路如下,請你將小明的解答補充完整:

解:設(shè)點B將向左移動x米,即BE=x,則:

EC= x+1.4,DC=ACDC=-0.8=4,

DE=5,在Rt△DEC中,由EC2+DC2=DE2

得方程為:     , 解方程得:    ,

∴點B將向左移動    米.

(2)解題回顧時,小聰提出了如下兩個問題:

①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會是1.8米嗎?為什么?

②梯子頂端下滑的距離與梯子底端向左移動的距離能相等嗎?為什么?

請你解答小聰提出的這兩個問題.

 

查看答案和解析>>

小明和同桌小聰一起合作探索:如圖,一架5米長的梯子AB斜靠在鉛直的墻壁AC上,這時梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動多少米?

(1)小明的思路如下,請你將小明的解答補充完整:
解:設(shè)點B將向左移動x米,即BE=x,則:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2
得方程為:     , 解方程得:    ,
∴點B將向左移動    米.
(2)解題回顧時,小聰提出了如下兩個問題:
①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會是1.8米嗎?為什么?
②梯子頂端下滑的距離與梯子底端向左移動的距離能相等嗎?為什么?
請你解答小聰提出的這兩個問題.

查看答案和解析>>

小明和同桌小聰一起合作探索:如圖,一架5米長的梯子AB斜靠在鉛直的墻壁AC上,這時梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動多少米?

(1)小明的思路如下,請你將小明的解答補充完整:
解:設(shè)點B將向左移動x米,即BE=x,則:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2,
得方程為:     , 解方程得:    ,
∴點B將向左移動    米.
(2)解題回顧時,小聰提出了如下兩個問題:
①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會是1.8米嗎?為什么?
②梯子頂端下滑的距離與梯子底端向左移動的距離能相等嗎?為什么?
請你解答小聰提出的這兩個問題.

查看答案和解析>>

雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.

  這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.這種思維方法叫化歸法.

  化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.

1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.對此,談?wù)勀愕目捶ǎ?/P>

2.我國古代數(shù)學研究一直處于領(lǐng)先地位,現(xiàn)在有所落后了,對此,我們不應(yīng)只感嘆古人的偉大,而更應(yīng)該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?

查看答案和解析>>


同步練習冊答案