設(shè)數(shù)列的各項(xiàng)都是正數(shù).. . . 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列的各項(xiàng)都是正數(shù),, , .

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式;w.w.w.k.s.5.u.c.o.m    

(3)求證:

查看答案和解析>>

設(shè)數(shù)列的各項(xiàng)都是正數(shù),, , .

⑴求數(shù)列的通項(xiàng)公式;⑵求數(shù)列的通項(xiàng)公式;

⑶求證: .

查看答案和解析>>

設(shè)數(shù)列的各項(xiàng)都是正數(shù),, , .
⑴求數(shù)列的通項(xiàng)公式;⑵求數(shù)列的通項(xiàng)公式;
⑶求證: .

查看答案和解析>>

設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意,都有,其中 為數(shù)列的前項(xiàng)和。

(1)求證數(shù)列是等差數(shù)列;

(2)若數(shù)列的前項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意,都有,其中 為數(shù)列的前項(xiàng)和。

(1)求證數(shù)列是等差數(shù)列;

(2)若數(shù)列的前項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

 

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

C

A

C

D

D

C

B

A

B

 

二、填空題

11. ;        12. (或);       13.  15;          14. 6;      

15.              16. ;                     17.

三、解答題

                                 …………12′

  故函數(shù)的取值范圍是…………12′      

 

19. 解:(1)設(shè)袋中原有n個(gè)白球,由題意知:,所以=12,

解得n=4(舍去),即袋中原有4個(gè)白球;                          …………4′

(2)由題意,的可能取值為1,2,3,4

所以,取球次數(shù)的分布列為:

1

2

3

4

P

                                                             …………9′  

(Ⅲ)因?yàn)榧紫热?所以甲只有可能在第1次和第3次取球,記“甲取到白球”的事件為A,

或 “=3”),所以  …………14′ 

20. 解:⑴由條件得:  ∴     ∵為等比數(shù)列∴                                 …………4′

 ⑵由   得           

     又   ∴                                 …………9′  ⑶∵

(或由),∴為遞增數(shù)列.                            

從而      

                                         …………14′

21.解:(1)依題意有,由顯然,得,化簡得;                                                    …………5′

(2)證明:(?)

                                            …………10′

(?)設(shè)點(diǎn)A、B的坐標(biāo)分別為,不妨設(shè)點(diǎn)A在點(diǎn)P與點(diǎn)B之間,點(diǎn),依(?)有*,又可設(shè)過點(diǎn)P(2,4)的直線方程為,得,

,代入上*式得

,又,得

 ,當(dāng)直線AB的斜率不存在時(shí),也滿足上式.即點(diǎn)Q總過直線,得證.                                                               …………15′

22. 解:(Ⅰ)設(shè)在公共點(diǎn)處的切線相同.,,由題意,.即得:,或(舍去).即有.                              …………4′

,則.于是當(dāng),即時(shí),

當(dāng),即時(shí),.故為增函數(shù),在為減函數(shù),于是的最大值為.                    …………8′

(Ⅱ)設(shè)

.故為減函數(shù),在為增函數(shù),于是函數(shù)上的最小值是.故當(dāng)時(shí),有,即當(dāng)時(shí),.       …………15′

 

 


同步練習(xí)冊(cè)答案